Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 19(5): 401-13, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19659895

ABSTRACT

The purpose of this paper was to investigate the effects of viral kinetics and exhaled droplet size on indoor transmission dynamics of influenza infection. The target cell-limited model with delayed virus production was adopted to strengthen the inner mechanisms of virus infection on human epithelial cell. The particle number and volume involved in the viral kinetics were linked with Wells-Riley mathematical equation to quantify the infection risk. We investigated population dynamics in a specific elementary school by using the seasonal susceptible - exposed - infected - recovery (SEIR) model. We found that exhaled pulmonary bioaerosol of sneeze (particle diameter <10 microm) have 10(2)-fold estimate higher than that of cough. Sneeze and cough caused risk probabilities range from 0.075 to 0.30 and 0.076, respectively; whereas basic reproduction numbers (R(0)) estimates range from 4 to 17 for sneeze and nearly 4 for cough, indicating sneeze-posed higher infection risk. The viral kinetics and exhaled droplet size for sneeze affect indoor transmission dynamics of influenza infection since date post-infection 1-7. This study provides direct mechanistic support that indoor influenza virus transmission can be characterized by viral kinetics in human upper respiratory tracts that are modulated by exhaled droplet size. Practical Implications This paper provides a predictive model that can integrate the influenza viral kinetics (target cell-limited model), indoor aerosol transmission potential (Wells-Riley mathematical equation), and population dynamic model [susceptible - exposed - infected - recovery (SEIR) model] in a proposed susceptible population. Viral kinetics expresses the competed results of human immunity ability with influenza virus generation. By linking the viral kinetics and different exposure parameters and environmental factors in a proposed school setting with five age groups, the influenza infection risk can be estimated. On the other hand, we implicated a new simple means of inhaling to mitigate exhaled bioaerosols through an inhaled non-toxic aerosol. The proposed predictive model may serve as a tool for further investigation of specific control measure such as the personal protection masks to alter the particle size and number concentration characteristics and minimize the exhaled bioaerosol droplet to decrease the infection risk in indoor environment settings.


Subject(s)
Air Microbiology , Influenza A virus/pathogenicity , Influenza, Human/transmission , Aerosols , Air Pollution, Indoor , Child , Cough/virology , Exhalation , Humans , Influenza A virus/isolation & purification , Influenza, Human/virology , Kinetics , Models, Biological , Particle Size , Schools , Sneezing
2.
Environ Monit Assess ; 155(1-4): 257-72, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18607762

ABSTRACT

Freshwater clam Corbicula fluminea, a surrogate species in metal toxicity testing, is a promising bioindicator of impairment in aquatic ecosystems. Little is known, however, about the relationship between clam valve daily rhythmic response and metal bioavailability related to a metal biological early warning system (BEWS) design. The purpose of this study was to link biotic ligand model (BLM)-based bioavailability and valve daily rhythm in C. fluminea to design a biomonitoring system for online in situ detection of waterborne copper (Cu). We integrated the Hill-based dose-time-response function and the fitted daily rhythm function of valve closure into a constructed programmatic mechanism. The functional presentation of the present dynamic system was completely demonstrated by employing a LabVIEW graphic control program in a personal computer. We used site-specific effect concentration causing 10% of total valve closure response (EC10) as the detection threshold to implement the proposed C. fluminea-based Cu BEWS. Here our results show that the proposed C. fluminea-based BEWS could be deliberately synthesized to online in situ transmit rapidly the information on waterborne bioavailable Cu levels under various aquatic environmental conditions through monitoring the valve daily rhythmic changes. We suggested that the developed C. fluminea-based dynamic biomonitoring system could assist in developing technically defensible site-specific water quality criteria to promote more efficient uses in water resources for protection of species health in aquatic environments.


Subject(s)
Circadian Rhythm/physiology , Copper/metabolism , Corbicula/physiology , Environmental Monitoring/methods , Water Pollutants, Chemical/metabolism , Animals , Corbicula/metabolism , Models, Theoretical
3.
Epidemiol Infect ; 135(5): 775-86, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17064459

ABSTRACT

Vaccination has proved a powerful defence against measles. We reappraise measles seroepidemiological data in Taiwan from 1974 to 2004 having robust age-stratified serological information on exposure and immunity to quantitatively characterize measles vaccination programmes. We dynamically model measles seroepidemiology to estimate age-dependent intensity of infection associated with the effects of different contact patterns on pre- and post-vaccination. The WAIFM (who acquires infection from whom) contact matrix is employed to describe the transmission between and within each age group. A deterministic SEIR (susceptible-exposed-infected-recovery) model is used to capture subpopulation dynamics. Our study shows that mass regional or nationwide vaccination programmes could greatly reduce the potential for a major measles epidemic and have strong direct effects on the potential impact of childhood vaccination. We parameterize a predictive model that should reduce the socio-economic costs of measles surveillance in Taiwan and thereby encourage its continuance, especially for preschool children.


Subject(s)
Measles Vaccine/immunology , Measles/prevention & control , Vaccination , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Measles/epidemiology , Models, Biological , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...