Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Sci Data ; 7(1): 59, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080203

ABSTRACT

Karst aquifers provide drinking water for 10% of the world's population, support agriculture, groundwater-dependent activities, and ecosystems. These aquifers are characterised by complex groundwater-flow systems, hence, they are extremely vulnerable and protecting them requires an in-depth understanding of the systems. Poor data accessibility has limited advances in karst research and realistic representation of karst processes in large-scale hydrological studies. In this study, we present World Karst Spring hydrograph (WoKaS) database, a community-wide effort to improve data accessibility. WoKaS is the first global karst springs discharge database with over 400 spring observations collected from articles, hydrological databases and researchers. The dataset's coverage compares to the global distribution of carbonate rocks with some bias towards the latitudes of more developed countries. WoKaS database will ensure easy access to a large-sample of good quality datasets suitable for a wide range of applications: comparative studies, trend analysis and model evaluation. This database will largely contribute to research advancement in karst hydrology, supports karst groundwater management, and promotes international and interdisciplinary collaborations.

3.
Ground Water ; 40(3): 232-41, 2002.
Article in English | MEDLINE | ID: mdl-12019638

ABSTRACT

Tracer tests represent the most appropriate approach for assessing hydrodispersive parameters such as transversal and longitudinal dispersivities or kinematic porosity on an aquifer scale. They are generally carried out by injecting a tracer in a borehole and measuring its concentration over time in neighboring boreholes by extracted volume sampling or downhole measurements. Logging is one of the most suitable methods for evaluating fissured reservoirs. But short circuits between fractures with different hydraulic potential through boreholes induce mixing phenomena that cannot be avoided without packers. This mixing can shift the breakthrough curves deduced from the logs for each producing fracture and distort determination of their location. The method proposed in this paper aims at measuring the flow rate and the solute breakthrough for hydraulically active fractures, in open boreholes. It involves estimating a velocity profile along the borehole column by the analysis of two successive logs: a shift function according to depth is thus determined by comparison between log portions on each successive one. The velocity gradients reflect the inward or outward flow rates produced by each fracture. On the basis of these flow rates, it is possible to determine the mixing effects inside the borehole and then to plot unbiased breakthrough curves for each producing fracture. This method was applied at a granitic site in the eastern Pyrenees. In spite of some questionable limitations, the results showed that the method seems adapted to situations with many fractures. The precise hydraulic pattern which is obtained at the borehole scale is discussed in terms of a dual porosity model. Furthermore, interpretation of the breakthrough curves for fractures corrected for mixing effects revealed that Peclet numbers are strongly underestimated if this phenomenon is not considered.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Water Supply , Geological Phenomena , Geology , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL