Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233193

ABSTRACT

Multiple Sclerosis (MS) is an autoimmune demyelinating and neurodegenerative disease of the central nervous system (CNS). Current management strategies suppress or modulate immune function, all with consequences and known side effects. They demonstrate a high level of success in limiting new relapses. However, the neurodegenerative process still affects both grey and white matter in the central nervous system. The sigma1 (S1R) ligand-regulated chaperone is implicated in many biological processes in various CNS-targeted diseases, acting on neural plasticity, myelination and neuroinflammation. Among the proteins involved in MS, S1R has therefore emerged as a promising new target. Standard and robust methods have been adopted to analyze the adsorption, distribution, metabolism, excretion (ADME) properties, safety pharmacology and toxicology of a previously synthetized simple benzamide-derived compound with nanomolar affinity for S1R, high selectivity, no cytotoxicity and good metabolic stability. The compound was also characterized as an agonist based on well-validated assays prior to in vivo investigations. Interestingly, we found that the oral administration of this compound resulted in an overall significant reduction in clinical progression in an MS experimental model. This effect is mediated through S1R action. Our results further suggest the potential use of this compound in the treatment of MS.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Receptors, sigma , Benzamides/therapeutic use , Humans , Ligands , Multiple Sclerosis/drug therapy , Receptors, sigma/metabolism
2.
Bioorg Chem ; 85: 349-356, 2019 04.
Article in English | MEDLINE | ID: mdl-30658234

ABSTRACT

A series of dimeric melatonin analogues 3a-e obtained by connecting two melatonin molecules through the methoxy oxygen atoms with spacers spanning 16-24 atoms and the agomelatine dimer 7 were synthesized and characterized in 2-[125-I]-iodomelatonin binding assays, bioluminescence resonance energy transfer (BRET) experiments, and in functional cAMP and ß-arrestin recruitment assays at MT1 and MT2 receptors. The binding affinity of 3a-e generally increased with increasing linker length. Bivalent ligands 3a-e increased BRET signals of MT1 dimers up to 3-fold compared to the monomeric control ligand indicating the simultaneous binding of the two pharmacophores to dimeric receptors. Bivalent ligands 3c and 7 exhibited important changes in functional properties on the Gi/cAMP pathway but not on the ß-arrestin pathway compared to their monomeric counterparts. Interestingly, 3c (20 atoms spacer) shows inverse agonistic properties at MT2 on the Gi/cAMP pathway. In conclusion, these findings indicate that O-linked melatonin dimers are promising tools to develop signaling pathway-based bivalent melatonin receptor ligands.


Subject(s)
Melatonin/analogs & derivatives , Melatonin/pharmacology , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT2/agonists , Bioluminescence Resonance Energy Transfer Techniques , Cyclic AMP/metabolism , Drug Inverse Agonism , HEK293 Cells , Humans , Ligands , Melatonin/metabolism , Molecular Structure , Protein Multimerization/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , beta-Arrestins/metabolism
3.
Nat Commun ; 9(1): 1216, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29572483

ABSTRACT

Transforming growth factor-ß (TGFß) signaling is initiated by the type I, II TGFß receptor (TßRI/TßRII) complex. Here we report the formation of an alternative complex between TßRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TßRI induces spontaneous TßRI-dependent Smad and non-Smad signaling by stabilizing the active TßRI conformation and competing for the binding of the negative regulator FKBP12 to TßRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TßRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFß-independent activation mode of TßRI and identifies GPR50 as a TßRI co-receptor with potential impact on cancer development.


Subject(s)
Mammary Neoplasms, Animal/prevention & control , Nerve Tissue Proteins/physiology , Receptor, Transforming Growth Factor-beta Type I/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Endosomes/metabolism , Female , Gene Expression Profiling , HEK293 Cells , HeLa Cells , Humans , Mammary Neoplasms, Animal/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Nerve Tissue Proteins/genetics , Oligonucleotide Array Sequence Analysis , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Smad Proteins/metabolism , Tacrolimus Binding Protein 1A/metabolism
4.
Br J Pharmacol ; 175(16): 3281-3297, 2018 08.
Article in English | MEDLINE | ID: mdl-28898928

ABSTRACT

BACKGROUND AND PURPOSE: Recent crystal structures of GPCRs have emphasized the previously unappreciated role of the second extracellular (E2) loop in ligand binding and gating and receptor activation. Here, we have assessed the role of the E2 loop in the activation of the melatonin MT1 receptor and in the inactivation of the closely related orphan receptor GPR50. EXPERIMENTAL APPROACH: Chimeric MT1 -GPR50 receptors were generated and functionally analysed in terms of 2-[125 I]iodomelatonin binding, Gi /cAMP signalling and ß-arrestin2 recruitment. We also used computational molecular dynamics (MD) simulations. KEY RESULTS: MD simulations of 300 ns revealed (i) the tight hairpin structure of the E2 loop of the MT1 receptor (ii) the most suitable features for melatonin binding in MT1 receptors and (iii) major predicted rearrangements upon MT1 receptor activation, stabilizing interaction networks between Phe179 or Gln181 in the E2 loop and transmembrane helixes 5 and 6. Functional assays confirmed these predictions, because reciprocal replacement of MT1 and GPR50 residues/domains led to the predicted loss- and gain-of-melatonin action of MT1 receptors and GPR50 respectively. CONCLUSIONS AND IMPLICATIONS: Our work demonstrated the crucial role of the E2 loop for MT1 receptor and GPR50 function by proposing a model in which the E2 loop is important in stabilizing active MT1 receptor conformations and by showing how evolutionary processes appear to have selected for modifications in the E2 loop in order to make GPR50 unresponsive to melatonin. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.


Subject(s)
Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT1/metabolism , HEK293 Cells , Humans , Melatonin/metabolism , Models, Molecular , Nerve Tissue Proteins/metabolism , Protein Structure, Secondary , Receptors, G-Protein-Coupled/metabolism
5.
Sci Signal ; 6(296): ra89, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24106342

ABSTRACT

The formation of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) heteromers enables signaling diversification and holds great promise for improved drug selectivity. Most studies of these oligomerization events have been conducted in heterologous expression systems, and in vivo validation is lacking in most cases, thus questioning the physiological significance of GPCR heteromerization. The melatonin receptors MT1 and MT2 exist as homomers and heteromers when expressed in cultured cells. We showed that melatonin MT1/MT2 heteromers mediated the effect of melatonin on the light sensitivity of rod photoreceptors in mice. This effect of melatonin involved activation of the heteromer-specific phospholipase C and protein kinase C (PLC/PKC) pathway and was abolished in MT1(-/-) or MT2(-/-) mice, as well as in mice overexpressing a nonfunctional MT2 mutant that interfered with the formation of functional MT1/MT2 heteromers in photoreceptor cells. Not only does this study establish an essential role of melatonin receptor heteromers in retinal function, it also provides in vivo support for the physiological importance of GPCR heteromerization. Thus, the MT1/MT2 heteromer complex may provide a specific pharmacological target to improve photoreceptor function.


Subject(s)
Eye Proteins/metabolism , Protein Multimerization/physiology , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Eye Proteins/genetics , Mice , Mice, Knockout , Mutation , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT2/genetics , Retinal Rod Photoreceptor Cells/cytology , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...