Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Diagnostics (Basel) ; 13(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132201

ABSTRACT

Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay's capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.

2.
Pharmaceutics ; 15(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37514128

ABSTRACT

Multidrug resistance in cancer is often mediated by P-glycoprotein. Natural compounds have been suggested as a fourth generation of P-glycoprotein inhibitors. Coleon U, isolated from Plectranthus mutabilis Codd., was reported to modulate P-glycoprotein activity but the underlying mechanism has not yet been revealed. Therefore, the effects of Coleon U on cell viability, proliferation, and cell death induction were studied in a non-small-cell lung carcinoma model comprising sensitive and multidrug-resistant cells with P-glycoprotein overexpression. P-glycoprotein activity and mitochondrial membrane potential were assessed by flow cytometry upon Coleon U, sodium-orthovanadate (an ATPase inhibitor), and verapamil (an ATPase stimulator) treatments. SwissADME was used to identify the pharmacokinetic properties of Coleon U, while P-glycoprotein expression was studied by immunofluorescence. Our results showed that Coleon U is not a P-glycoprotein substrate and is equally efficient in sensitive and multidrug-resistant cancer cells. A decrease in P-glycoprotein activity observed with Coleon U and verapamil after 72 h is antagonized in combination with sodium-orthovanadate. Coleon U induced a pronounced effect on mitochondrial membrane depolarization and showed a tendency to decrease P-glycoprotein expression. In conclusion, Coleon U-delayed effect on the decrease in P-glycoprotein activity is due to P-glycoprotein's functioning dependence on ATP production in mitochondria.

3.
Bioorg Chem ; 133: 106410, 2023 04.
Article in English | MEDLINE | ID: mdl-36822000

ABSTRACT

Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.


Subject(s)
Antineoplastic Agents , Cytostatic Agents , Selenium , Humans , Cytostatic Agents/pharmacology , Cell Line, Tumor , Selenium/pharmacology , Cyanates/pharmacology , Apoptosis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship
4.
Histochem Cell Biol ; 159(5): 431-437, 2023 May.
Article in English | MEDLINE | ID: mdl-36536187

ABSTRACT

Identification of the signature molecular profiles involved in therapy resistance is of vital importance in developing new strategies for treatments and disease monitoring. Protein alpha-1 antitrypsin (AAT, encoded by SERPINA1 gene) is an acute-phase protein, and its high expression has been linked with unfavorable clinical outcome in different types of cancer; however, data on its involvement in therapy resistance are still insufficient. We analyzed SERPINA1 mRNA expression in three different multidrug-resistant (MDR) cell lines-U87-TxR, NCI-H460/R, and DLD1-TxR-and in U87 cells grown in alginate microfibers as a 3D cellular model of glioblastoma. Expression of IL-6 as a major modulator of SERPINA1 was also analyzed. Additionally, AAT protein expression in MDR cells was analyzed by immunofluorescence. SERPINA1 gene expression and AAT protein expression were significantly upregulated in all the tested MDR cell lines compared with their sensitive counterparts. Moreover, SERPINA1 was significantly upregulated in 3D models of glioblastoma, previously found to have upregulated drug-resistance-related gene expression compared with 2D cells. With the exception of NCI-H460/R, in all cell lines as well as in a 3D model of U87 cells, increase in SERPINA1 expression correlated with the increase in IL-6 expression. Our results indicate that AAT could be utilized as a biomarker of therapy resistance in cancer; however, further studies are needed to elucidate the mechanisms driving AAT upregulation in therapy resistance and its biological significance in this process.


Subject(s)
Drug Resistance, Multiple , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Interleukin-6 , Drug Resistance, Neoplasm
5.
Life (Basel) ; 12(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36294938

ABSTRACT

Drug resistance presents a major obstacle to the successful treatment of glioblastoma. Autophagy plays a key role in drug resistance, particularly in relation to targeted therapy, which has prompted the use of autophagy inhibitors to increase the effectiveness of targeted therapeutics. The ability of two Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306, to induce autophagy was evaluated in the human glioblastoma cell line U87 and its multidrug-resistant counterpart U87-TxR. Autophagy markers were assessed by flow cytometry, microscopy, and Western blot, and induction of autophagy by these compounds was demonstrated after 3 h as well as 48 h. The effects of Si306 and pro-Si306 on cell proliferation and cell death were examined in the presence or absence of autophagy inhibition by bafilomycin A1. Combined treatments of Si306 and pro-Si306 with bafilomycin A1 were synergistic in nature, and the inhibition of autophagy sensitized glioblastoma cells to Src tyrosine kinase inhibitors. Si306 and pro-Si306 more strongly inhibited cell proliferation and triggered necrosis in combination with bafilomycin A1. Our findings suggest that modulation of Si306- and pro-Si306-induced autophagy can be used to enhance the anticancer effects of these Src tyrosine kinase inhibitors and overcome the drug-resistant phenotype in glioblastoma cells.

6.
Methods Mol Biol ; 2535: 1-9, 2022.
Article in English | MEDLINE | ID: mdl-35867218

ABSTRACT

3D cultures of cancer cells enable better mimicking of physiological conditions compared to traditional monolayer 2D cultures. Here we describe alginate scaffold-based model that can be used in both static and biomimetic conditions for studying drug sensitivity in cancer cells and multidrug resistance (MDR) mechanisms. This 3D culture model resembles in vivo conditions and provides relevant and reproducible results. It is easy to set up and allows for facile manipulation for downstream analyses. All these remarkable features make this 3D culture model a promising tool in drug discovery and cancer cell biology research.


Subject(s)
Antineoplastic Agents , Cell Culture Techniques , Alginates , Antineoplastic Agents/pharmacology , Biomimetics , Cell Culture Techniques/methods , Drug Resistance, Multiple
7.
Brain Sci ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209342

ABSTRACT

BACKGROUND: Glioblastoma (GBM) highly expresses Src tyrosine kinase involved in survival, proliferation, angiogenesis and invasiveness of tumor cells. Src activation also reduces reactive oxygen species (ROS) generation, whereas Src inhibitors are able to increase cellular ROS levels. METHODS: Pro-oxidative effects of two pyrazolo[3,4-d]pyrimidine derivatives-Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306-were investigated in human GBM cells U87 and patient-derived GBM-6. ROS production and changes in mitochondrial membrane potential were assessed by flow cytometry. The expression levels of superoxide dismutase 1 (SOD1) and 2 (SOD2) were studied by Western blot. DNA damage, cell death induction and senescence were also examined in GBM-6 cells. RESULTS: Si306 and pro-Si306 more prominently triggered ROS production and expression of antioxidant enzymes in primary GBM cells. These effects were followed by mitochondrial membrane potential disruption, double-strand DNA breaks and senescence that eventually led to necrosis. CONCLUSION: Src kinase inhibitors, Si306 and pro-Si306, showed significant pro-oxidative potential in patient-derived GBM cells. This feature contributes to the already demonstrated anti-glioblastoma properties of these compounds in vitro and in vivo and encourages clinical investigations.

8.
Medicina (Kaunas) ; 57(5)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064439

ABSTRACT

Background and Objectives: Optimization of chemotherapy is crucial for cancer patients. Timely and costly efficient treatments are emerging due to the increasing incidence of cancer worldwide. Here, we present a methodology of nano-motion analysis that could be developed to serve as a screening tool able to determine the best chemotherapy option for a particular patient within hours. Materials and Methods: Three different human cancer cell lines and their multidrug resistant (MDR) counterparts were analyzed with an atomic force microscope (AFM) using tipless cantilevers to adhere the cells and monitor their nano-motions. Results: The cells exposed to doxorubicin (DOX) differentially responded due to their sensitivity to this chemotherapeutic. The death of sensitive cells corresponding to the drop in signal variance occurred in less than 2 h after DOX application, while MDR cells continued to move, even showing an increase in signal variance. Conclusions: Nano-motion sensing can be developed as a screening tool that will allow simple, inexpensive and quick testing of different chemotherapeutics for each cancer patient. Further investigations on patient-derived tumor cells should confirm the method's applicability.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Neoplasms/drug therapy
9.
J Physiol Biochem ; 74(2): 345-358, 2018 May.
Article in English | MEDLINE | ID: mdl-29611132

ABSTRACT

Chronic inflammation plays an essential role in the development of diabetic complications. Understanding the molecular mechanisms that support inflammation is a prerequisite for the design of novel anti-inflammatory therapies. These would take into consideration circulating levels of cytokines and damage-associated molecular patterns (DAMPs) that include the high mobility group box 1 (HMGB1) protein which, in part, promotes the inflammatory response through TLR4 signaling. The liver, as the source of circulating cytokines and acute-phase proteins, contributes to the control of systemic inflammation. We previously found that liver injury in streptozotocin-induced diabetic rats correlated with the level of oxidative stress, increased expression of HMGB1, and with the activation of TLR4-mediated cell death pathways. In the present work, we examined the effects of ethyl pyruvate (EP), an inhibitor of HMGB1 release/expression, on the modulation of activation of the HMGB1/TLR4 inflammatory cascade in diabetic liver. We observed that increased expression of inflammatory markers, TNF-α, IL-6, and haptoglobin in diabetic liver was associated with increased HMGB1/TLR4 interaction, activation of MAPK (p38, ERK, JNK)/NF-κB p65 and JAK1/STAT3 signaling pathways, and with decreased expression of Nrf2-regulated antioxidative enzymes. The reduction in HMGB1 expression as the result of EP administration reduced the pro-inflammatory activity of HMGB1 and exerted a protective effect on diabetic liver, which was observed as improved liver histology and antioxidant and inflammatory statuses. Our results suggest that prevention of HMGB1 release and blockage of the HMGB/TLR4 axis represents a potentially effective therapeutic strategy aimed at ameliorating diabetes-induced inflammation and ensuing liver injury.


Subject(s)
Diabetes Mellitus, Experimental/complications , HMGB1 Protein/metabolism , Inflammation/metabolism , Liver Diseases/complications , Toll-Like Receptor 4/metabolism , Animals , Biomarkers/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Haptoglobins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Humans , Interleukin-6/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , MAP Kinase Signaling System , Male , NF-E2-Related Factor 2/metabolism , Protein Kinases/metabolism , Pyruvates/pharmacology , Rats, Wistar , Streptozocin , Tumor Necrosis Factor-alpha/metabolism
10.
J. physiol. biochem ; 73(4): 511-521, nov. 2017. ilus, graf
Article in English | IBECS | ID: ibc-178901

ABSTRACT

The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolyso some formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed


Subject(s)
Animals , Rats , Apoptosis/physiology , Autophagy/physiology , Diabetes Mellitus, Experimental/pathology , HMGB1 Protein/physiology , Liver/pathology , Oxidative Stress , Melatonin
11.
J Physiol Biochem ; 73(4): 511-521, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28695466

ABSTRACT

The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Diabetes Mellitus, Experimental/pathology , HMGB1 Protein/physiology , Liver/pathology , Oxidative Stress , Animals , Rats
12.
Food Chem Toxicol ; 96: 11-23, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27451944

ABSTRACT

Influence of genetic background on toxicity of oral cadmium (Cd) administration (30 days, in drinking water; 5 ppm and 50 ppm of cadmium) was examined in Albino Oxford (AO) and Dark Agouti (DA) rats. Similar cadmium deposition was noted in gut and draining mesenteric lymph nodes (MLN) of both strains but intensity and/or the pattern of responses to cadmium in these tissues differ. Less intense intestinal damage and leukocyte infiltration was observed in gut of cadmium-exposed AO rats. While gut-associated lymph node cells of DA rats responded to cadmium with an increase of cell proliferation, oxidative activity, IFN-γ, IL-17 production and expression, no changes of these activities of MLN cells of cadmium-treated AO rats were observed. Spleen, which accumulated cadmium comparable to MLN, responded to metal by drop in cell viability and by reduced responsiveness of proliferation and cytokine production to stimulation in DA rats solely, which suggest tissue dependence of cadmium effects. More pronounced cadmium effects on MLN and spleen cells of DA rats (which accumulated similar cadmium doses as AO rats), showed greater susceptibility of this strain to cadmium. The results presented, for the first time, depict the influence of genetic background to effects of oral cadmium administration.


Subject(s)
Cadmium/toxicity , Cytokines/metabolism , Intestines/drug effects , Lymph Nodes/drug effects , Mice, Inbred Strains/classification , Spleen/drug effects , Administration, Oral , Animals , Cadmium/administration & dosage , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/genetics , Dose-Response Relationship, Drug , Immunoblotting , Intestinal Mucosa/metabolism , Intestines/pathology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Male , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Spleen/metabolism , Spleen/pathology
13.
J Physiol Biochem ; 70(4): 947-59, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25298180

ABSTRACT

Diabetes is a risk factor for cardiovascular disease that has a multifactorial etiology, with oxidative stress as an important component. Our previous observation of a significant diabetes-related increase in rat cardiac catalase (CAT) activity suggested that CAT could play a major role in delaying the development of diabetic cardiomyopathy. Thus, in the present work, we examined the effects of the daily administration of the CAT inhibitor, 3-amino-1,2,4-triazole (1 mg/g), on the hearts of streptozotocin (STZ)-induced diabetic rats. Administration of CAT inhibitor was started from the 15th day after the last STZ treatment (40 mg/kg/5 days), and maintained until the end of the 4th or 6th weeks of diabetes. Compared to untreated diabetic rats, at the end of the observation period, CAT inhibition lowered the induced level of cardiac CAT activity to the basal level and decreased CAT protein expression, mediated through a decline in the nuclear factor erythroid-derived 2-like 2 /nuclear factor-kappa B p65 (Nrf2/NF-κB p65) subunit ratio. The perturbed antioxidant defenses resulting from CAT inhibition promoted increased H2O2production (P < 0.05) and lipid peroxidation (P < 0.05). Generated cytotoxic stimuli increased DNA damage (P < 0.05) and activated pro-apoptotic events, observed as a decrease (P < 0.05) in the ratio of the apoptosis regulator proteins Bcl-2/Bax, increased (P < 0.05) presence of the poly(ADP-ribose) polymerase-1 (PARP-1) 85 kDa apoptotic fragment and cytoplasmic levels of cytochrome C. These findings confirm an important function of CAT in the suppression of events leading to diabetes-promoted cardiac dysfunction and cardiomyopathy.


Subject(s)
Catalase/physiology , DNA Damage , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/etiology , Amitrole/pharmacology , Animals , Apoptosis , Catalase/antagonists & inhibitors , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/pathology , Enzyme Inhibitors/pharmacology , Male , Myocardium/enzymology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Rats, Wistar , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...