Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(14): 3851-3858, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38557111

ABSTRACT

Tin halide perovskites suffer from high defect densities compared with their lead counterparts. To decrease defect densities, SnF2 is commonly used as an additive in tin halide perovskites. Herein, we investigate how SnF2 compares to other SnX2 additives (X = F, Cl, Br) in terms of electronic and ionic defect properties in FASnI3. We find that FASnI3 films with SnF2 show the lowest Urbach energies (EU) of 19 meV and a decreased p-type character, as probed with ultraviolet photoemission spectroscopy. The activation energy of ion migration, as probed with thermal admittance spectroscopy, for FASnI3 with SnF2 is 1.33 eV, which is higher than with SnCl2 and SnBr2, which are 1.22 and 0.79 eV, respectively, resulting in less ion migration. Because of improved defect passivation, the champion power conversion efficiency of FASnI3 with SnF2 is 7.47% and only 1.84% and 1.20% with SnCl2 and SnBr2, respectively.

2.
Adv Mater ; : e2312254, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38521992

ABSTRACT

A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.

3.
J Phys Chem Lett ; 14(24): 5633-5640, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37310355

ABSTRACT

The modern picture of negative charge carriers on conjugated polymers invokes the formation of a singly occupied (spin-up/spin-down) level within the polymer gap and a corresponding unoccupied level above the polymer conduction band edge. The energy splitting between these sublevels is related to on-site Coulomb interactions between electrons, commonly termed Hubbard U. However, spectral evidence for both sublevels and experimental access to the U value is still missing. Here, we provide evidence by n-doping the polymer P(NDI2OD-T2) with [RhCp*Cp]2, [N-DMBI]2, and cesium. Changes in the electronic structure after doping are studied with ultraviolet photoelectron and low-energy inverse photoemission spectroscopies (UPS, LEIPES). UPS data show an additional density of states (DOS) in the former empty polymer gap while LEIPES data show an additional DOS above the conduction band edge. These DOS are assigned to the singly occupied and unoccupied sublevels, allowing determination of a U value of ∼1 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...