Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(4)2023 03 26.
Article in English | MEDLINE | ID: mdl-37112832

ABSTRACT

Dengue transmission is determined by a complex set of interactions between the environment, Aedes aegypti mosquitoes, dengue viruses, and humans. Emergence in new geographic areas can be unpredictable, with some regions having established mosquito populations for decades without locally acquired transmission. Key factors such as mosquito longevity, temperature-driven extrinsic incubation period (EIP), and vector-human contact can strongly influence the potential for disease transmission. To assess how these factors interact at the edge of the geographical range of dengue virus transmission, we conducted mosquito sampling in multiple urban areas located throughout the Arizona-Sonora desert region during the summer rainy seasons from 2013 to 2015. Mosquito population age structure, reflecting mosquito survivorship, was measured using a combination of parity analysis and relative gene expression of an age-related gene, SCP-1. Bloodmeal analysis was conducted on field collected blood-fed mosquitoes. Site-specific temperature was used to estimate the EIP, and this predicted EIP combined with mosquito age were combined to estimate the abundance of "potential" vectors (i.e., mosquitoes old enough to survive the EIP). Comparisons were made across cities by month and year. The dengue endemic cities Hermosillo and Ciudad Obregon, both in the state of Sonora, Mexico, had higher abundance of potential vectors than non-endemic Nogales, Sonora, Mexico. Interestingly, Tucson, Arizona consistently had a higher estimated abundance of potential vectors than dengue endemic regions of Sonora, Mexico. There were no observed city-level differences in species composition of blood meals. Combined, these data offer insights into the critical factors required for dengue transmission at the ecological edge of the mosquito's range. However, further research is needed to integrate an understanding of how social and additional environmental factors constrain and enhance dengue transmission in emerging regions.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , Humans , Arizona/epidemiology , Temperature , Mosquito Vectors , Infectious Disease Incubation Period
2.
J Med Entomol ; 54(1): 204-211, 2017 01.
Article in English | MEDLINE | ID: mdl-28082648

ABSTRACT

Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.


Subject(s)
Aedes/physiology , Dengue Virus/isolation & purification , Dengue/transmission , Insect Vectors/physiology , Aedes/growth & development , Aedes/virology , Animals , Cities , Dengue/virology , Female , Humans , Insect Vectors/growth & development , Insect Vectors/virology , Larva/growth & development , Larva/physiology , Larva/virology , Longevity , Mexico , Population Density , Population Dynamics , Pupa/growth & development , Pupa/physiology , Pupa/virology , Seasons
3.
PLoS One ; 7(10): e46946, 2012.
Article in English | MEDLINE | ID: mdl-23077536

ABSTRACT

Aedes aegypti, the primary vector of dengue virus, is well established throughout urban areas of the Southwestern US, including Tucson, AZ. Local transmission of the dengue virus, however, has not been reported in this area. Although many factors influence the distribution of the dengue virus, we hypothesize that one contributing factor is that the lifespan of female Ae. aegypti mosquitoes in the Southwestern US is too short for the virus to complete development and be transmitted to a new host. To test this we utilized two age grading techniques. First, we determined parity by analyzing ovarian tracheation and found that only 40% of Ae. aegypti females collected in Tucson, AZ were parous. The second technique determined transcript levels of an age-associated gene, Sarcoplasmic calcium-binding protein 1 (SCP-1). SCP-1 expression decreased in a predictable manner as the age of mosquitoes increased regardless of rearing conditions and reproductive status. We developed statistical models based on parity and SCP-1 expression to determine the age of individual, field collected mosquitoes within three age brackets: nonvectors (0-5 days post-emergence), unlikely vectors (6-14 days post-emergence), and potential vectors (15+ days post-emergence). The statistical models allowed us to accurately group individual wild mosquitoes into the three age brackets with high confidence. SCP-1 expression levels of individual, field collected mosquitoes were analyzed in conjunction with parity status. Based on SCP-1 transcript levels and parity data, 9% of collected mosquitoes survived more than 15 days post emergence.


Subject(s)
Aedes/virology , Calcium-Binding Proteins/genetics , Dengue Virus/pathogenicity , Dengue/transmission , Insect Proteins/genetics , Insect Vectors/virology , Aedes/genetics , Aging , Animals , Female , Gene Expression Regulation, Developmental , Genes, Insect , Humans , Insect Vectors/genetics , Southwestern United States
4.
J Am Mosq Control Assoc ; 27(2): 135-41, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21805845

ABSTRACT

Aedes aegypti has reappeared in urban communities in the southwestern U.S.A. in the 1990s after a 40-year absence. In 2003 and 2004, a systematic survey was conducted throughout metropolitan Tucson, AZ, to identify human and environmental factors associated with Ae. aegypti distribution within an arid urban area. Aedes aegypti presence and abundance were measured monthly using the Centers for Disease Control and Prevention enhanced oviposition traps at sampling sites established in a grid at 3- to 4-km intervals across the city. Sampling occurred in the summer rainy season (July through September), the peak of mosquito activity in the region. Multiple regression analyses were conducted to determine relationships between mosquito density and factors that could influence mosquito distribution. House age was the only factor that showed a consistent significant association with Ae. aegypti abundance in both years: older houses had more mosquito eggs. This is the 1st study of Ae. aegypti distribution at a local level to identify house age as an explanatory factor independent of other human demographic factors. Further research into the reasons why mosquitoes were more abundant around older homes may help inform and refine future vector surveillance and control efforts in the event of a dengue outbreak in the region.


Subject(s)
Aedes/growth & development , Environment , Housing , Aedes/physiology , Animals , Arizona , Cities , Dengue/prevention & control , Dengue/transmission , Dengue Virus , Desert Climate , Ovum , Population Density , Regression Analysis , Seasons
5.
Exp Gerontol ; 45(9): 685-90, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20451597

ABSTRACT

Dietary restriction extends lifespan in many organisms, but little is known about how it affects hematophagous arthropods. We demonstrated that diet restriction during either larval or adult stages extends Aedes aegypti lifespan. A. aegypti females fed either single or no blood meals survived 30-40% longer than those given weekly blood meals. However, mosquitoes given weekly blood meals produced far more eggs. To minimize reproduction's impact on lifespan, adult mosquitoes were fed artificial blood meals containing <10% of the protein in normal human blood, minimizing egg production. A. aegypti fed artificial blood meals containing 25mg/ml of BSA had significantly shorter lifespans than those fed either 10 or 5mg/ml. To assess the impact of larval dietary restriction on adult lifespan, we maintained larval A. aegypti on 2X, 1X (normal diet), 0.5X or 0.25X diets. Adult mosquitoes fed 0.5X and 0.25X larval diets survived significantly longer than those fed the 2X larval diet regardless of adult diet. In summary, dietary restriction during both larval and adult stages extends lifespan. This diet-mediated lifespan extension has important consequences for understanding how dietary restriction regulates lifespan and disease transmission.


Subject(s)
Aedes/growth & development , Diet , Larva/physiology , Longevity/physiology , Reproduction/physiology , Aedes/physiology , Animals , Blood , Diet, Reducing , Energy Intake , Female , Humans , Life Expectancy , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...