Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1378186, 2024.
Article in English | MEDLINE | ID: mdl-38766466

ABSTRACT

Increased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic Thinopyrum species. "Primary" recombinant lines (RLs), having portions of their 7AL arms distally replaced by 7el1L Th. ponticum segments, and "secondary" RLs, harboring Th. elongatum 7EL insertions "nested" into 7el1L segments, in addition to near-isogenic lines lacking any alien segment (CLs), cv. Om Rabia (OR) as salt tolerant control, and BW introgression lines with either most of 7el1 or the complete 7E chromosome substitution as additional CLs, were subjected to moderate (100 mM) and intense (200 mM) salt (NaCl) stress at early growth stages. The applied stress altered cell cycle progression, determining a general increase of cells in G1 and a reduction in S phase. Assessment of morpho-physiological and biochemical traits overall showed that the presence of Thinopyrum spp. segments was associated with considerably increased salinity tolerance versus its absence. For relative water content, Na+ accumulation and K+ retention in roots and leaves, oxidative stress indicators (malondialdehyde and hydrogen peroxide) and antioxidant enzyme activities, the observed differences between stressed and unstressed RLs versus CLs was of similar magnitude in "primary" and "secondary" types, suggesting that tolerance factors might reside in defined 7el1L shared portion(s). Nonetheless, the incremental contribution of 7EL segments emerged in various instances, greatly mitigating the effects of salt stress on root and leaf growth and on the quantity of photosynthetic pigments, boosting accumulation of compatible solutes and minimizing the decrease of a powerful antioxidant like ascorbate. The seemingly synergistic effect of 7el1L + 7EL segments/genes made "secondary" RLs able to often exceed cv. OR and equal or better perform than BW lines. Thus, transfer of a suite of genes from halophytic germplasm by use of fine chromosome engineering strategies may well be the way forward to enhance salinity tolerance of glycophytes, even the sensitive DW.

2.
Protoplasma ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687397

ABSTRACT

In plants, the pathogenesis-related (PR) proteins have been identified as important regulators of biotic and abiotic stresses. PR proteins branch out into 19 different classes (PR1-PR19). Basically, all PR proteins display a well-established method of action, with the notable exception of PR1, which is a member of a large superfamily of proteins with a common CAP domain. We have previously isolated and characterized the first PR1 from durum wheat, called TdPR-1.2. In the current research work, TdPR1.2 gene was used to highlight its functional activities under various abiotic (sodium chloride (100 mM NaCl) and oxidative stresses (3 mM H2O2), hormonal salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA), and abiotic stresses (Botrytis cinerea and Alternaria solani). Enhancement survival index was detected in Arabidopsis transgenic plants expressing TdPR1.2 gene. Moreover, quantitative real-time reverse transcription PCR (qRT-PCR) analysis demonstrated induction of antioxidant enzymes such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). It equally revealed a decrease of malondialdehyde (MDA) as well as hydrogen peroxide (H2O2) levels in transgenic Arabidopsis plants compared to control lines, confirming the role of TdPR1.2 in terms of alleviating biotic and abiotic stresses in transgenic Arabidopsis plants. Eventually, RT-qPCR results showed a higher expression of biotic stress-related genes (PR1 and PDF1.2) in addition to a downregulation of the wound-related gene (LOX3 and VSP2) in transgenic lines treated with jasmonic acid (JA). Notably, these findings provide evidence for the outstanding functions of PR1.2 from durum wheat which can be further invested to boost tolerance in crop plants to abiotic and biotic stresses.

3.
Protoplasma ; 261(2): 317-331, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37837550

ABSTRACT

The thioredoxins (Trxs) are ubiquitous and they play a crucial role in various biological processes like growth and stress response. Although the functions of Trxs proteins are described in several previous reports, the function of the isoform Trxh2 of durum wheat (Triticum durum L.), designated as TdTrxh2, in abiotic stress response still unknown. Thus, we aimed in this study the functional characterization of TdTrxh2 through its expression in yeast cells and Arabidopsis plants. Sequence analysis revealed that TdTrxh2 protein shared the conserved redox site with the other Trxh from other plant species. Under various abiotic stresses, TdTrxh2 was up-regulated in leaves and roots of durum wheat. Interestingly, we demonstrated that TdTrxh2 exhibit protective effect on LDH activity against various treatments. Besides, the expression of TdTrxh2 in yeast cells conferred their tolerance to multiple stresses. Moreover, transgenic Arabidopsis expressing TdTrxh2 showed tolerance phenotype to several abiotic stresses. This tolerance was illustrated by high rate of proline accumulation, root proliferation, low accumulation of reactive oxygen species like H2O2 and O2·-, and high antioxidant CAT and POD enzymes activities. All these findings suggested that TdTrxh2 promotes abiotic stress tolerance through the redox homoeostasis regulation and its protective role.


Subject(s)
Arabidopsis , Triticum , Triticum/genetics , Triticum/metabolism , Arabidopsis/metabolism , Thioredoxin h/genetics , Thioredoxin h/metabolism , Saccharomyces cerevisiae/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Oxidation-Reduction , Homeostasis , Gene Expression Regulation, Plant , Droughts
4.
Dev Genes Evol ; 230(1): 37, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31989242

ABSTRACT

In the originally published article, the first names and family names of the authors were interchanged, hence not correct. The correct presentation of names is presented above.

5.
Dev Genes Evol ; 230(1): 27-36, 2020 01.
Article in English | MEDLINE | ID: mdl-31838648

ABSTRACT

Otospiralin (OTOSP) is a small protein of unknown function, expressed in fibrocytes of the inner ear and required for normal cochlear auditory function. Despite its conservation from fish to mammals, expression of otospiralin was only investigated in mammals. Here, we report for the first time the expression profile of OTOS orthologous genes in zebrafish (Danio rerio): otospiralin and si:ch73-23l24.1 (designated otospiralin-like). In situ hybridization analyses in zebrafish embryos showed a specific expression of otospiralin-like in notochord (from 14 to 48 hpf) and similar expression patterns for otospiralin and otospiralin-like in gut (from 72 to 120 hpf), swim bladder (from 96 to 120 hpf) and inner ear (at 120 hpf). Morpholino knockdown of otospiralin and otospiralin-like showed no strong change of the body structure of the embryos at 5 dpf and the inner ear was normally formed. Nevertheless, knockdown embryos showed a reduced number of kinocilia in the lateral crista, indicating that these genes play an important role in kinocilium formation. RT-qPCR revealed that otospiralin is highly expressed in adult zebrafish inner ear comparing to the others analyzed tissues as previously shown for mice. Interestingly, otospiralin-like was not detected in the inner ear which suggests that otospiralin have a more important function in hearing than otospiralin-like. Phylogenetic analysis of otospiralin proteins in vertebrates indicated the presence of two subgroups and supported the functional divergence observed in zebrafish for otospiralin and otospiralin-like genes. This study offers the first insight into the expression of otospiralin and otospiralin-like in zebrafish. Expression data point to an important role for otospiralin in zebrafish hearing and a specific role for otospiralin-like in notochord vacuolization.


Subject(s)
Gene Duplication , Zebrafish/genetics , Amino Acid Sequence , Animals , Ear, Inner/growth & development , Ear, Inner/metabolism , Embryo, Nonmammalian/metabolism , Gene Knockdown Techniques , Mice , Morpholinos , Phylogeny , Transcriptome , Vertebrates/genetics , Zebrafish/growth & development , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...