Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
2.
Trends Pharmacol Sci ; 45(2): 145-156, 2024 02.
Article in English | MEDLINE | ID: mdl-38212195

ABSTRACT

Abnormal iron metabolism has long been regarded as a key metabolic hallmark of cancer. As a critical cofactor, iron contributes to tumor progression by participating in various processes such as mitochondrial electron transport, gene regulation, and DNA synthesis or repair. Although the role of iron in tumor cells has been widely studied, recent studies have uncovered the interplay of iron metabolism between tumor cells and immune cells, which may affect both innate and adaptive immune responses. In this review, we discuss the current understanding of the regulatory networks of iron metabolism between cancer cells and immune cells and how they contribute to antitumor immunity, and we analyze potential therapeutics targeting iron metabolism. Also, we highlight several key challenges and describe potential therapeutic approaches for future investigations.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Iron/metabolism , Homeostasis , Immunity, Innate
4.
Nat Commun ; 14(1): 6690, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872170

ABSTRACT

Colorectal cancer (CRC) patients with liver metastases usually obtain less benefit from immunotherapy, and the underlying mechanisms remain understudied. Here, we identify that fibrinogen-like protein 1 (FGL1), secreted from cancer cells and hepatocytes, facilitates the progression of CRC in an intraportal injection model by reducing the infiltration of T cells. Mechanistically, tumor-associated macrophages (TAMs) activate NF-ĸB by secreting TNFα/IL-1ß in the liver microenvironment and transcriptionally upregulate OTU deubiquitinase 1 (OTUD1) expression, which enhances FGL1 stability via deubiquitination. Disrupting the TAM-OTUD1-FGL1 axis inhibits metastatic tumor progression and synergizes with immune checkpoint blockade (ICB) therapy. Clinically, high plasma FGL1 levels predict poor outcomes and reduced ICB therapy benefits. Benzethonium chloride, an FDA-approved antiseptics, curbs FGL1 secretion, thereby inhibiting liver metastatic tumor growth. Overall, this study uncovers the critical roles and posttranslational regulatory mechanism of FGL1 in promoting metastatic tumor progression, highlighting the TAM-OTUD1-FGL1 axis as a potential target for cancer immunotherapy.


Subject(s)
Colonic Neoplasms , Liver Neoplasms , Rectal Neoplasms , Humans , Liver Neoplasms/metabolism , Hepatocytes/metabolism , Tumor Microenvironment , Fibrinogen/metabolism , Ubiquitin-Specific Proteases
5.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37595580

ABSTRACT

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Subject(s)
Autophagy , Hippo Signaling Pathway , Animals , Mice , Cell Survival , Organ Size
6.
Mol Cell ; 83(11): 1887-1902.e8, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37244254

ABSTRACT

Interleukin-1ß (IL-1ß) is a key protein in inflammation and contributes to tumor progression. However, the role of IL-1ß in cancer is ambiguous or even contradictory. Here, we found that upon IL-1ß stimulation, nicotinamide nucleotide transhydrogenase (NNT) in cancer cells is acetylated at lysine (K) 1042 (NNT K1042ac) and thereby induces the mitochondrial translocation of p300/CBP-associated factor (PCAF). This acetylation enhances NNT activity by increasing the binding affinity of NNT for NADP+ and therefore boosts NADPH production, which subsequently sustains sufficient iron-sulfur cluster maintenance and protects tumor cells from ferroptosis. Abrogating NNT K1042ac dramatically attenuates IL-1ß-promoted tumor immune evasion and synergizes with PD-1 blockade. In addition, NNT K1042ac is associated with IL-1ß expression and the prognosis of human gastric cancer. Our findings demonstrate a mechanism of IL-1ß-promoted tumor immune evasion, implicating the therapeutic potential of disrupting the link between IL-1ß and tumor cells by inhibiting NNT acetylation.


Subject(s)
NADP Transhydrogenases , Neoplasms , Humans , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Acetylation , Protein Processing, Post-Translational , Immunotherapy , Neoplasms/drug therapy , Neoplasms/genetics
7.
Nat Commun ; 14(1): 2253, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37080959

ABSTRACT

Iron metabolism dysregulation is tightly associated with cancer development. But the underlying mechanisms remain poorly understood. Increasing evidence has shown that long noncoding RNAs (lncRNAs) participate in various metabolic processes via integrating signaling pathway. In this study, we revealed one iron-triggered lncRNA, one target of YAP, LncRIM (LncRNA Related to Iron Metabolism, also named ZBED5-AS1 and Loc729013), which effectively links the Hippo pathway to iron metabolism and is largely independent on IRP2. Mechanically, LncRIM directly binds NF2 to inhibit NF2-LATS1 interaction, which causes YAP activation and increases intracellular iron level via DMT1 and TFR1. Additionally, LncRIM-NF2 axis mediates cellular iron metabolism dependent on the Hippo pathway. Clinically, high expression of LncRIM correlates with poor patient survival, suggesting its potential use as a biomarker and therapeutic target. Taken together, our study demonstrated a novel mechanism in which LncRIM-NF2 axis facilitates iron-mediated feedback loop to hyperactivate YAP and promote breast cancer development.


Subject(s)
Hippo Signaling Pathway , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Proliferation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Cancer Cell ; 41(5): 919-932.e5, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37059106

ABSTRACT

Although chemotherapy plus PD-1 blockade (chemo+anti-PD-1) has become the standard first-line therapy for advanced esophageal squamous cell carcinoma (ESCC), reliable biomarkers for this regimen are lacking. Here we perform whole-exome sequencing on tumor samples from 486 patients of the JUPITER-06 study and develop a copy number alteration-corrected tumor mutational burden that depicts immunogenicity more precisely and predicts chemo+anti-PD-1 efficacy. We identify several other favorable immunogenic features (e.g., HLA-I/II diversity) and risk oncogenic alterations (e.g., PIK3CA and TET2 mutation) associated with chemo+anti-PD-1 efficacy. An esophageal cancer genome-based immuno-oncology classification (EGIC) scheme incorporating these immunogenic features and oncogenic alterations is established. Chemo+anti-PD-1 achieves significant survival improvements in EGIC1 (immunogenic feature-favorable and oncogenic alteration-negative) and EGIC2 (either immunogenic feature-favorable or oncogenic alteration-negative) subgroups, but not the EGIC3 subgroup (immunogenic feature-unfavorable and oncogenic alteration-positive). Thus, EGIC may guide future individualized treatment strategies and inform mechanistic biomarker research for chemo+anti-PD-1 treatment in patients with advanced ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Mutation , DNA Copy Number Variations , Biomarkers, Tumor/genetics , B7-H1 Antigen/genetics
10.
Cancer Lett ; 552: 215978, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36283584

ABSTRACT

Aberrant glucose metabolism is one of the most striking characteristics of metabolic reprogramming in cancer. Thus, clarifying the regulatory mechanism of glucose metabolism is crucial to understanding tumor progression and developing novel therapeutic strategies for cancer patients. Recent developments in circular RNAs have explained the regulatory mechanism of glucose metabolism from a new dimension. In this review, we briefly summarize the recent advances in circRNA research on cancer glucose metabolism and emphasize the different regulatory mechanisms, including acting as miRNA sponges, interacting with proteins and being translated into proteins. Additionally, we discuss the future research directions of circular RNAs in the field of glucose metabolism.


Subject(s)
MicroRNAs , Neoplasms , Humans , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/pathology , Glucose
11.
Gut ; 72(3): 501-511, 2023 03.
Article in English | MEDLINE | ID: mdl-35803704

ABSTRACT

OBJECTIVE: Methionine metabolism is involved in a myriad of cellular functions, including methylation reactions and redox maintenance. Nevertheless, it remains unclear whether methionine metabolism, RNA methylation and antitumour immunity are molecularly intertwined. DESIGN: The antitumour immunity effect of methionine-restricted diet (MRD) feeding was assessed in murine models. The mechanisms of methionine and YTH domain-containing family protein 1 (YTHDF1) in tumour immune escape were determined in vitro and in vivo. The synergistic effects of MRD or YTHDF1 depletion with PD-1 blockade were also investigated. RESULTS: We found that dietary methionine restriction reduced tumour growth and enhanced antitumour immunity by increasing the number and cytotoxicity of tumour-infiltrating CD8+ T cells in different mouse models. Mechanistically, the S-adenosylmethionine derived from methionine metabolism promoted the N6-methyladenosine (m6A) methylation and translation of immune checkpoints, including PD-L1 and V-domain Ig suppressor of T cell activation (VISTA), in tumour cells. Furthermore, MRD or m6A-specific binding protein YTHDF1 depletion inhibited tumour growth by restoring the infiltration of CD8+ T cells, and synergised with PD-1 blockade for better tumour control. Clinically, YTHDF1 expression correlated with poor prognosis and immunotherapy outcomes for cancer patients. CONCLUSIONS: Methionine and YTHDF1 play a critical role in anticancer immunity through regulating the functions of T cells. Targeting methionine metabolism or YTHDF1 could be a potential new strategy for cancer immunotherapy.


Subject(s)
Methionine , Neoplasms , Mice , Animals , Methionine/metabolism , CD8-Positive T-Lymphocytes , Methylation , Programmed Cell Death 1 Receptor , Racemethionine/metabolism
12.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36528388

ABSTRACT

Membrane-based cells are the fundamental structural and functional units of organisms, while evidences demonstrate that liquid-liquid phase separation (LLPS) is associated with the formation of membraneless organelles, such as P-bodies, nucleoli and stress granules. Many studies have been undertaken to explore the functions of protein phase separation (PS), but these studies lacked an effective tool to identify the sequence segments that critical for LLPS. In this study, we presented a novel software called dSCOPE (http://dscope.omicsbio.info) to predict the PS-driving regions. To develop the predictor, we curated experimentally identified sequence segments that can drive LLPS from published literature. Then sliding sequence window based physiological, biochemical, structural and coding features were integrated by random forest algorithm to perform prediction. Through rigorous evaluation, dSCOPE was demonstrated to achieve satisfactory performance. Furthermore, large-scale analysis of human proteome based on dSCOPE showed that the predicted PS-driving regions enriched various protein post-translational modifications and cancer mutations, and the proteins which contain predicted PS-driving regions enriched critical cellular signaling pathways. Taken together, dSCOPE precisely predicted the protein sequence segments critical for LLPS, with various helpful information visualized in the webserver to facilitate LLPS-related research.


Subject(s)
Proteins , Software , Humans , Proteins/chemistry
14.
Drug Resist Updat ; 65: 100883, 2022 12.
Article in English | MEDLINE | ID: mdl-36202008

ABSTRACT

AIMS: This study aimed to identify mechanisms of drug resistance to the combination of vemurafenib, irinotecan, and cetuximab (VIC) in BRAFV600E metastatic colorectal cancer (mCRC). METHODS: Forty-one patients with BRAFV600E mCRC from July 2018 and June 2020 were evaluated, with tissue and/or plasma samples collected. We profiled tissue and plasma samples using whole-exome sequencing and targeted sequencing of 425 cancer-relevant genes. Clinical cohort analysis from published studies was performed to consolidate our findings. RESULTS: BRAF mutant in baseline plasma and its dynamics are significantly associated with VIC-related response, and concurrent RNF43 mutation significantly sensitises tumour to VIC treatment. VIC resistance frequently involves genes in PI3K, MAPK pathway, and several novel resistance mechanisms such as TGFBR2 and SMAD4 mutations, and copy-number gains in PTK2, MYC, and GATA6 have been identified. We also firstly describe acquired altered genes in DNA damaging repair pathway, occurring in 33 % of patients after VIC treatment, and particularly, patients with this pre-treatment resistance subclones developed inferior responses, along with higher tumour mutation burden both at baseline and progression plasma. CONCLUSION: Analysis of ctDNA can provide novel insights into molecular resistance mechanisms to VIC in BRAFV600E mCRC patients, allowing accurate guidance for clinicians in personalised treatment strategies.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Drug Resistance, Neoplasm , Humans , Cetuximab/pharmacology , Cetuximab/therapeutic use , Circulating Tumor DNA/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Irinotecan/pharmacology , Irinotecan/therapeutic use , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Vemurafenib/therapeutic use
16.
Nat Metab ; 4(8): 1022-1040, 2022 08.
Article in English | MEDLINE | ID: mdl-35995997

ABSTRACT

Cholesterol contributes to the structural basis of biological membranes and functions as a signaling molecule, whose dysregulation has been associated with various human diseases. Here, we report that the long non-coding RNA (lncRNA) SNHG6 increases progression from non-alcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) by modulating cholesterol-induced mTORC1 activation. Mechanistically, cholesterol binds ER-anchored FAF2 protein to promote the formation of a SNHG6-FAF2-mTOR complex. As a putative cholesterol effector, SNHG6 enhances cholesterol-dependent mTORC1 lysosomal recruitment and activation via enhancing FAF2-mTOR interaction at ER-lysosome contacts, thereby coordinating mTORC1 kinase cascade activation with cellular cholesterol biosynthesis in a self-amplified cycle to accelerate cholesterol-driven NAFLD-HCC development. Notably, loss of SNHG6 inhibits mTORC1 signaling and impairs growth of patient-derived xenograft liver cancer tumors, identifyifng SNHG6 as a potential target for liver cancer treatment. Together, our findings illustrate the crucial role of organelle-associated lncRNA in organelle communication, nutrient sensing, and kinase cascades.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cholesterol , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/metabolism
17.
Oncogene ; 41(32): 3912-3924, 2022 08.
Article in English | MEDLINE | ID: mdl-35798877

ABSTRACT

Metastasis accounts for the major cause of cancer-related mortality. How disseminated tumor cells survive under suspension conditions and avoid anoikis is largely unknown. Here, using a metabolic enzyme-centered CRISPR-Cas9 genetic screen, we identified methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1) as a novel suppressor of anoikis. MTHFD1 depletion obviously restrained the capacity of cellular antioxidant defense and inhibited tumor distant metastasis. Mechanistically, MTHFD1 was found to bind the protein arginine methyltransferase 5 (PRMT5) and then undergo symmetric dimethylation on R173 by PRMT5. Under suspension conditions, the interaction between MTHFD1 and PRMT5 was strengthened, which increased the symmetric dimethylation of MTHFD1. The elevated methylation of MTHFD1 largely augmented its metabolic activity to generate NADPH, therefore leading to anoikis resistance and distant organ metastasis. Therapeutically, genetic depletion or pharmacological inhibition of PRMT5 declined tumor distant metastasis. And R173 symmetric dimethylation status was associated with metastasis and prognosis of ESCC patients. In conclusion, our study uncovered a novel regulatory role and therapeutic implications of PRMT5/MTHFD1 axis in facilitating anoikis resistance and cancer metastasis.


Subject(s)
Formate-Tetrahydrofolate Ligase , Neoplasms , Anoikis/genetics , Arginine/genetics , Arginine/metabolism , Formate-Tetrahydrofolate Ligase/metabolism , Humans , Methylation , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/metabolism , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/metabolism
18.
Signal Transduct Target Ther ; 7(1): 54, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35221331

ABSTRACT

Metabolic enzymes have an indispensable role in metabolic reprogramming, and their aberrant expression or activity has been associated with chemosensitivity. Hence, targeting metabolic enzymes remains an attractive approach for treating tumors. However, the influence and regulation of cysteine desulfurase (NFS1), a rate-limiting enzyme in iron-sulfur (Fe-S) cluster biogenesis, in colorectal cancer (CRC) remain elusive. Here, using an in vivo metabolic enzyme gene-based clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 library screen, we revealed that loss of NFS1 significantly enhanced the sensitivity of CRC cells to oxaliplatin. In vitro and in vivo results showed that NFS1 deficiency synergizing with oxaliplatin triggered PANoptosis (apoptosis, necroptosis, pyroptosis, and ferroptosis) by increasing the intracellular levels of reactive oxygen species (ROS). Furthermore, oxaliplatin-based oxidative stress enhanced the phosphorylation level of serine residues of NFS1, which prevented PANoptosis in an S293 phosphorylation-dependent manner during oxaliplatin treatment. In addition, high expression of NFS1, transcriptionally regulated by MYC, was found in tumor tissues and was associated with poor survival and hyposensitivity to chemotherapy in patients with CRC. Overall, the findings of this study provided insights into the underlying mechanisms of NFS1 in oxaliplatin sensitivity and identified NFS1 inhibition as a promising strategy for improving the outcome of platinum-based chemotherapy in the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Iron-Sulfur Proteins , Apoptosis/genetics , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/therapeutic use , Oxaliplatin/pharmacology , Phosphorylation
19.
Cell Res ; 31(10): 1088-1105, 2021 10.
Article in English | MEDLINE | ID: mdl-34267352

ABSTRACT

Long noncoding RNAs (lncRNAs) are emerging as a new class of important regulators of signal transduction in tissue homeostasis and cancer development. Liquid-liquid phase separation (LLPS) occurs in a wide range of biological processes, while its role in signal transduction remains largely undeciphered. In this study, we uncovered a lipid-associated lncRNA, small nucleolar RNA host gene 9 (SNHG9) as a tumor-promoting lncRNA driving liquid droplet formation of Large Tumor Suppressor Kinase 1 (LATS1) and inhibiting the Hippo pathway. Mechanistically, SNHG9 and its associated phosphatidic acids (PA) interact with the C-terminal domain of LATS1, promoting LATS1 phase separation and inhibiting LATS1-mediated YAP phosphorylation. Loss of SNHG9 suppresses xenograft breast tumor growth. Clinically, expression of SNHG9 positively correlates with YAP activity and breast cancer progression. Taken together, our results uncover a novel regulatory role of a tumor-promoting lncRNA (i.e., SNHG9) in signal transduction and cancer development by facilitating the LLPS of a signaling kinase (i.e., LATS1).


Subject(s)
Biological Phenomena , RNA, Long Noncoding , Cell Line, Tumor , Cell Proliferation , Hippo Signaling Pathway , Humans , Phosphatidic Acids , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/genetics , RNA, Long Noncoding/genetics , Signal Transduction , YAP-Signaling Proteins
20.
Oncogene ; 40(33): 5168-5181, 2021 08.
Article in English | MEDLINE | ID: mdl-34218271

ABSTRACT

Fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) demethylase, participates in tumor progression and metastasis in many malignancies, but its role in colorectal cancer (CRC) is still unclear. Here, we found that FTO protein levels, but not RNA levels, were downregulated in CRC tissues. Reduced FTO protein expression was correlated with a high recurrence rate and poor prognosis in resectable CRC patients. Moreover, we demonstrated that hypoxia restrained FTO protein expression, mainly due to an increase in ubiquitin-mediated protein degradation. The serine/threonine kinase receptor associated protein (STRAP) might served as the E3 ligase and K216 was the major ubiquitination site responsible for hypoxia-induced FTO degradation. FTO inhibited CRC metastasis both in vitro and in vivo. Mechanistically, FTO exerted a tumor suppressive role by inhibiting metastasis-associated protein 1 (MTA1) expression in an m6A-dependent manner. Methylated MTA1 transcripts were recognized by an m6A "reader", insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), which then stabilized its mRNA. Together, our findings highlight the critical role of FTO in CRC metastasis and reveal a novel epigenetic mechanism by which the hypoxic tumor microenvironment promotes CRC metastasis.


Subject(s)
Colorectal Neoplasms , Down-Regulation , Adenosine , Annexin A2 , Humans , RNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...