Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496531

ABSTRACT

Oxidative stress is a key factor causing mitochondrial dysfunction and retinal ganglion cell (RGC) death in glaucomatous neurodegeneration. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway is involved in mitochondrial protection, promoting RGC survival. Soluble adenylyl cyclase (sAC) is one of the key regulators of the cAMP/PKA signaling pathway. However, the precise molecular mechanisms underlying the sAC-mediated signaling pathway and mitochondrial protection in RGCs that counter oxidative stress are not well characterized. Here, we demonstrate that sAC plays a critical role in protecting RGC mitochondria from oxidative stress. Using mouse models of oxidative stress, we found that activating sAC protected RGCs, blocked AMP-activated protein kinase activation, inhibited glial activation, and improved visual function. Moreover, we found that this is the result of preserving mitochondrial dynamics (fusion and fission), promoting mitochondrial bioenergetics and biogenesis, and preventing metabolic stress and apoptotic cell death in a paraquat oxidative stress model. Notably, sAC activation ameliorated mitochondrial dysfunction in RGCs by enhancing mitochondrial biogenesis, preserving mitochondrial structure, and increasing ATP production in oxidatively stressed RGCs. These findings suggest that activating sAC enhances the mitochondrial structure and function in RGCs to counter oxidative stress, consequently promoting RGC protection. We propose that modulation of the sAC-mediated signaling pathway has therapeutic potential acting on RGC mitochondria for treating glaucoma and other retinal diseases.

2.
J Physiol ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668020

ABSTRACT

Deleterious Ca2+ accumulation is central to hypoxic cell death in the brain of most mammals. Conversely, hypoxia-mediated increases in cytosolic Ca2+ are retarded in hypoxia-tolerant naked mole-rat brain. We hypothesized that naked mole-rat brain mitochondria have an enhanced capacity to buffer exogenous Ca2+ and examined Ca2+ handling in naked mole-rat cortical tissue. We report that naked mole-rat brain mitochondria buffer >2-fold more exogenous Ca2+ than mouse brain mitochondria, and that the half-maximal inhibitory concentration (IC50 ) at which Ca2+ inhibits aerobic oxidative phosphorylation is >2-fold higher in naked mole-rat brain. The primary driving force of Ca2+ uptake is the mitochondrial membrane potential (Δψm ), and the IC50 at which Ca2+ decreases Δψm is ∼4-fold higher in naked mole-rat than mouse brain. The ability of naked mole-rat brain mitochondria to safely retain large volumes of Ca2+ may be due to ultrastructural differences that support the uptake and physical storage of Ca2+ in mitochondria. Specifically, and relative to mouse brain, naked mole-rat brain mitochondria are larger and have higher crista density and increased physical interactions between adjacent mitochondrial membranes, all of which are associated with improved energetic homeostasis and Ca2+ management. We propose that excessive Ca2+ influx into naked mole-rat brain is buffered by physical storage in large mitochondria, which would reduce deleterious Ca2+ overload and may thus contribute to the hypoxia and ischaemia-tolerance of naked mole-rat brain. KEY POINTS: Unregulated Ca2+ influx is a hallmark of hypoxic brain death; however, hypoxia-mediated Ca2+ influx into naked mole-rat brain is markedly reduced relative to mice. This is important because naked mole-rat brain is robustly tolerant against in vitro hypoxia, and because Ca2+ is a key driver of hypoxic cell death in brain. We show that in hypoxic naked mole-rat brain, oxidative capacity and mitochondrial membrane integrity are better preserved following exogenous Ca2+ stress. This is due to mitochondrial buffering of exogenous Ca2+ and is driven by a mitochondrial membrane potential-dependant mechanism. The unique ultrastructure of naked mole-rat brain mitochondria, as a large physical storage space, may support increased Ca2+ buffering and thus hypoxia-tolerance.

3.
Elife ; 112022 08 09.
Article in English | MEDLINE | ID: mdl-35943143

ABSTRACT

The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here, we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.


Subject(s)
Stem Cell Niche , Zebrafish , Animals , Hematopoietic Stem Cells/metabolism , Microscopy, Electron
4.
J Neurosci ; 40(44): 8556-8572, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33020216

ABSTRACT

Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.


Subject(s)
Hair Cells, Auditory, Outer/pathology , Hearing Loss/pathology , Mitochondria/pathology , Adenosine Triphosphate/biosynthesis , Aging/physiology , Animals , Calcium/metabolism , Connectome , Cytoplasm/metabolism , Endoplasmic Reticulum/pathology , Energy Metabolism/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Male , Membrane Potential, Mitochondrial/physiology , Mice , Neuronal Plasticity/drug effects , Potassium/pharmacology
5.
J Cell Sci ; 130(19): 3248-3260, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28808085

ABSTRACT

Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.


Subject(s)
Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Cell Line, Transformed , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...