Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 23(5): 1142-1154, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36932735

ABSTRACT

Conifers make up about one third of global forests but are threatened by seed parasitoid wasp species. Many of these wasps belong to the genus Megastigmus, yet little is known about their genomic background. In this study, we provide chromosome-level genome assemblies for two oligophagous conifer parasitoid species of Megastigmus, which represent the first two chromosome-level genomes of the genus. The assembled genomes of Megastigmus duclouxiana and M. sabinae are 878.48 Mb (scaffold N50 of 215.60 Mb) and 812.98 Mb (scaffold N50 of 139.16 Mb), respectively, which are larger than the genome size of most hymenopterans due to the expansion of transposable elements. Expanded gene families highlight the difference in sensory-related genes between the two species, reflecting the difference in their hosts. We further found that these two species have fewer family members but more single-gene duplications than polyphagous congeners in the gene families of ATP-binding cassette transporter (ABC), cytochrome P450 (P450) and olfactory receptors (OR). These findings shed light on the pattern of adaptation to a narrow spectrum of hosts in oligophagous parasitoids. Our findings suggest potential drivers underlying genome evolution and parasitism adaptation, and provide valuable resources for understanding the ecology, genetics and evolution of Megastigmus, as well as for the research and biological control of global conifer forest pests.


Subject(s)
Tracheophyta , Wasps , Animals , Wasps/genetics , Tracheophyta/genetics , Genomics , Adaptation, Physiological , Chromosomes
2.
Plant Divers ; 44(4): 369-376, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35967254

ABSTRACT

Elevation plays a crucial factor in the distribution of plants, as environmental conditions become increasingly harsh at higher elevations. Previous studies have mainly focused on the effects of large-scale elevational gradients on plants, with little attention on the impact of smaller-scale gradients. In this study we used 14 microsatellite loci to survey the genetic structure of 332 Juniperus squamata plants along elevation gradient from two sites in the Hengduan Mountains. We found that the genetic structure (single, clonal, mosaic) of J. squamata shrubs is affected by differences in elevational gradients of only 150 m. Shrubs in the mid-elevation plots rarely have a clonal or mosaic structure compared to shrubs in lower- or higher-elevation plots. Human activity can significantly affect genetic structure, as well as reproductive strategy and genetic diversity. Sub-populations at mid-elevations had the highest yield of seed cones, lower levels of asexual reproduction and higher levels of genetic diversity. This may be due to the trade-off between elevational stress and anthropogenic disturbance at mid-elevation since there is greater elevational stress at higher-elevations and greater intensity of anthropogenic disturbance at lower-elevations. Our findings provide new insights into the finer scale genetic structure of alpine shrubs, which may improve the conservation and management of shrublands, a major vegetation type on the Hengduan Mountains and the Qinghai-Tibet Plateau.

3.
Evol Appl ; 15(6): 919-933, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782009

ABSTRACT

Habitat loss induced by climate warming is a major threat to biodiversity, particularly to threatened species. Understanding the genetic diversity and distributional responses to climate change of threatened species is critical to facilitate their conservation and management. Cupressus gigantea, a rare conifer found in the eastern Qinghai-Tibet Plateau (QTP) at 3000-3600 m.a.s.l., is famous for its largest specimen, the King Cypress, which is >55 m tall. Here, we obtained transcriptome data from 96 samples of 10 populations covering its whole distribution and used these data to characterize genetic diversity, identify conservation units, and elucidate genomic vulnerability to future climate change. After filtering, we identified 145,336, 26,103, and 2833 single nucleotide polymorphisms in the whole, putatively neutral, and putatively adaptive datasets, respectively. Based on the whole and putatively neutral datasets, we found that populations from the Yalu Tsangpo River (YTR) and Nyang River (NR) catchments could be defined as separate management units (MUs), due to distinct genetic clusters and demographic histories. Results of gradient forest models suggest that all populations of C. gigantea may be at risk due to the high expected rate of climate change, and the NR MU had a higher risk than the YTR MU. This study deepens our understanding of the complex evolutionary history and population structure of threatened tree species in extreme environments, such as dry river valleys above 3000 m.a.s.l. in the QTP, and provides insights into their susceptibility to global climate change and potential for adaptive responses.

4.
BMC Genom Data ; 22(1): 55, 2021 12 05.
Article in English | MEDLINE | ID: mdl-34865616

ABSTRACT

OBJECTIVES: Cupressaceae is the second largest family of coniferous trees (Coniferopsida) with important economic and ecological values. However, like other conifers, the members of Cupressaceae have extremely large genome (> 8 gigabytes), which limited the researches of these taxa. A high-quality transcriptome is an important resource for gene discovery and annotation for non-model organisms. DATA DESCRIPTION: Juniperus squamata, a tetraploid species which is widely distributed in Asian mountains, represents the largest genus, Juniperus, in Cupressaceae. Single-molecule real-time sequencing was used to obtain full-length transcriptome of Juniperus squamata. The full-length transcriptome was corrected with Illumina RNA-seq data from the same individual. A total of 47,860 non-redundant full-length transcripts, N50 of which was 2839, were obtained. A total of 57,393 simple sequence repeats were identified and 268,854 open reading frames were predicted for Juniperus squamata. A BLAST alignment against non-redundant protein database was conducted and 10,818 sequences were annotated in Gene Ontology database. InterPro analysis shows that 30,403 sequences have been functionally characterized against its member database. This data presents the first comprehensive transcriptome characterization of Juniperus species, and provides an important reference for researches on the genomics and evolutionary history of Cupressaceae plants and conifers in the future.


Subject(s)
Cupressaceae , Juniperus , Lizards , Animals , Cupressaceae/genetics , Genomics , Juniperus/genetics , Lizards/genetics , Transcriptome/genetics
5.
Front Genet ; 12: 733576, 2021.
Article in English | MEDLINE | ID: mdl-34790221

ABSTRACT

Population genetic assessment is crucial for the conservation and management of threatened species. Xanthocyparis vietnamensis is an endangered species that is currently restricted to karst mountains in southwestern China and Vietnam. This rare conifer was first recorded in 2002 from northern Vietnam and then in 2013 from Guangxi, China, yet nothing is known about its genetic diversity nor ploidy level variation, although previous cytological study suggest that Vietnamese populations are tetraploids. There have been about 45 individuals found to date in Guangxi, China. Here, we genotyped 33 X. vietnamensis individuals using 20 newly developed, polymorphic microsatellite loci, to assess the genetic variability of its extremely small populations. The genetic diversity of X. vietnamensis (H E = 0.511) was lower than that of two other heliophile species, Calocedrus macrolepis and Fokienia hodginsii, which have similar distribution ranges. This is consistent with the signature of a genetic bottleneck detected in X. vietnamensis. Although the population genetic differentiation coefficient across loci is moderate (F ST = 0.125), STRUCTURE analysis revealed two distinct genetic clusters, namely the northern and southern population groups; DAPC analysis grouped the southern populations together in one cluster separate from the northern populations; AMOVA analysis detected a significant genetic differentiation between the two population groups (F RT = 0.089, p < 0.05), and BARRIER analysis detected a genetic barrier between them. Moreover, we detected differentiation in ploidy level between northern and southern populations, sampled individuals from the former and the later are all diploid and tetraploid cytotypes with mean genome sizes of 26.08 and 48.02 pg/2C, respectively. We deduced that heterogeneous geomorphology and historical events (e.g., human deforestation, Quaternary climate oscillations) may have contributed to population fragmentation and small population size in X. vietnamensis. Considering both genetic and ploidy level differentiation, we propose that two different management units (northern and southern) should be considered and a combination of in situ and ex situ conservation measures should be employed to preserve populations of this endangered species in southwestern China in the light of our findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...