Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397246

ABSTRACT

Mercury (Hg) pollution not only poses a threat to the environment but also adversely affects the growth and development of plants, with potential repercussions for animals and humans through bioaccumulation in the food chain. Maize, a crucial source of food, industrial materials, and livestock feed, requires special attention in understanding the genetic factors influencing mercury accumulation. Developing maize varieties with low mercury accumulation is vital for both maize production and human health. In this study, a comprehensive genome-wide association study (GWAS) was conducted using an enlarged SNP panel comprising 1.25 million single nucleotide polymorphisms (SNPs) in 230 maize inbred lines across three environments. The analysis identified 111 significant SNPs within 78 quantitative trait loci (QTL), involving 169 candidate genes under the Q model. Compared to the previous study, the increased marker density and optimized statistical model led to the discovery of 74 additional QTL, demonstrating improved statistical power. Gene ontology (GO) enrichment analysis revealed that most genes participate in arsenate reduction and stress responses. Notably, GRMZM2G440968, which has been reported in previous studies, is associated with the significant SNP chr6.S_155668107 in axis tissue. It encodes a cysteine proteinase inhibitor, implying its potential role in mitigating mercury toxicity by inhibiting cysteine. Haplotype analyses provided further insights, indicating that lines carrying hap3 exhibited the lowest mercury content compared to other haplotypes. In summary, our study significantly enhances the statistical power of GWAS, identifying additional genes related to mercury accumulation and metabolism. These findings offer valuable insights into unraveling the genetic basis of mercury content in maize and contribute to the development of maize varieties with low mercury accumulation.


Subject(s)
Mercury , Quantitative Trait Loci , Humans , Chromosome Mapping , Zea mays/genetics , Zea mays/metabolism , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Mercury/toxicity , Mercury/metabolism , Phenotype
2.
Mol Breed ; 43(12): 91, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38099287

ABSTRACT

Starch is a major component of cereals, comprising over 70% of dry weight. It serves as a primary carbon source for humans and animals. In addition, starch is an indispensable industrial raw material. While maize (Zea mays) is a key crop and the primary source of starch, the genetic basis for starch content in maize kernels remains poorly understood. In this study, using an enlarged panel, we conducted a genome-wide association study (GWAS) based on best linear unbiased prediction (BLUP) value for starch content of 261 inbred lines across three environments. Compared with previous study, we identified 14 additional significant quantitative trait loci (QTL), encompassed a total of 42 genes, and indicated that increased marker density contributes to improved statistical power. By integrating gene expression profiling, Gene Ontology (GO) enrichment and haplotype analysis, several potential target genes that may play a role in regulating starch content in maize kernels have been identified. Notably, we found that ZmAPC4, associated with the significant SNP chr4.S_175584318, which encodes a WD40 repeat-like superfamily protein and is highly expressed in maize endosperm, might be a crucial regulator of maize kernel starch synthesis. Out of the 261 inbred lines analyzed, they were categorized into four haplotypes. Remarkably, it was observed that the inbred lines harboring hap4 demonstrated the highest starch content compared to the other haplotypes. Additionally, as a significant achievement, we have developed molecular markers that effectively differentiate maize inbred lines based on their starch content. Overall, our study provides valuable insights into the genetic basis of starch content and the molecular markers can be useful in breeding programs aimed at developing maize varieties with high starch content, thereby improving breeding efficiency. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01437-6.

3.
Theor Appl Genet ; 136(9): 182, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37555969

ABSTRACT

KEY MESSAGE: Here, we revealed maize prolificacy highly correlated with domestication and identified a causal gene ZmEN1 located in one novel QTL qGEN261 that regulating maize prolificacy by using multiple-mapping methods. The development of maize prolificacy (EN) is crucial for enhancing yield and breeding specialty varieties. To achieve this goal, we employed a genome-wide association study (GWAS) to analyze the genetic architecture of EN in maize. Using 492 inbred lines with a wide range of EN variability, our results demonstrated significant differences in genetic, environmental, and interaction effects. The broad-sense heritability (H2) of EN was 0.60. Through GWAS, we identified 527 significant single nucleotide polymorphisms (SNPs), involved 290 quantitative trait loci (QTL) and 806 genes. Of these SNPs, 18 and 509 were classified as major effect loci and minor loci, respectively. In addition, we performed a bulk segregant analysis (BSA) in an F2 population constructed by a few-ears line Zheng58 and a multi-ears line 647. Our BSA results identified one significant QTL, qBEN1. Importantly, combining the GWAS and BSA, four co-located QTL, involving six genes, were identified. Three of them were expressed in vegetative meristem, shoot tip, internode and tip of ear primordium, with ZmEN1, encodes an unknown auxin-like protein, having the highest expression level in these tissues. It suggested that ZmEN1 plays a crucial role in promoting axillary bud and tillering to encourage the formation of prolificacy. Haplotype analysis of ZmEN1 revealed significant differences between different haplotypes, with inbred lines carrying hap6 having more EN. Overall, this is the first report about using GWAS and BSA to dissect the genetic architecture of EN in maize, which can be valuable for breeding specialty maize varieties and improving maize yield.


Subject(s)
Genome-Wide Association Study , Zea mays , Chromosome Mapping , Genome-Wide Association Study/methods , Zea mays/genetics , Plant Breeding , Quantitative Trait Loci , Polymorphism, Single Nucleotide , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...