Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773462

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Subject(s)
Cardiopulmonary Bypass , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis/drug effects , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Neurons/enzymology , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Edema/prevention & control , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/pathology , Anti-Inflammatory Agents/pharmacology , Rats , S100 Calcium Binding Protein beta Subunit/metabolism , Inflammation Mediators/metabolism
2.
Commun Biol ; 6(1): 717, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468557

ABSTRACT

The Human BioMolecular Atlas Program (HuBMAP) aims to compile a Human Reference Atlas (HRA) for the healthy adult body at the cellular level. Functional tissue units (FTUs), relevant for HRA construction, are of pathobiological significance. Manual segmentation of FTUs does not scale; highly accurate and performant, open-source machine-learning algorithms are needed. We designed and hosted a Kaggle competition that focused on development of such algorithms and 1200 teams from 60 countries participated. We present the competition outcomes and an expanded analysis of the winning algorithms on additional kidney and colon tissue data, and conduct a pilot study to understand spatial location and density of FTUs across the kidney. The top algorithm from the competition, Tom, outperforms other algorithms in the expanded study, while using fewer computational resources. Tom was added to the HuBMAP infrastructure to run kidney FTU segmentation at scale-showcasing the value of Kaggle competitions for advancing research.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Adult , Humans , Pilot Projects , Machine Learning
3.
Commun Biol ; 6(1): 718, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468758

ABSTRACT

Mapping the human body at single cell resolution in three dimensions (3D) is important for understanding cellular interactions in context of tissue and organ organization. 2D spatial cell analysis in a single tissue section may be limited by cell numbers and histology. Here we show a workflow for 3D reconstruction of multiplexed sequential tissue sections: MATRICS-A (Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial - Analysis). We demonstrate MATRICS-A in 26 serial sections of fixed skin (stained with 18 biomarkers) from 12 donors aged between 32-72 years. Comparing the 3D reconstructed cellular data with the 2D data, we show significantly shorter distances between immune cells and vascular endothelial cells (56 µm in 3D vs 108 µm in 2D). We also show 10-70% more T cells (total) within 30 µm of a neighboring T helper cell in 3D vs 2D. Distances of p53, DDB2 and Ki67 positive cells to the skin surface were consistent across all ages/sun exposure and largely localized to the lower stratum basale layer of the epidermis. MATRICS-A provides a framework for analysis of 3D spatial cell relationships in healthy and aging organs and could be further extended to diseased organs.


Subject(s)
Endothelial Cells , Imaging, Three-Dimensional , Humans , Adult , Middle Aged , Aged , Imaging, Three-Dimensional/methods , Microvascular Density , Sunlight , Aging , Cell Count
4.
J Int Med Res ; 51(2): 3000605231153587, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36756846

ABSTRACT

OBJECTIVE: DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia-reperfusion injury (LIRI). METHODS: We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. RESULTS: Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. CONCLUSIONS: Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.


Subject(s)
Lung Transplantation , Reperfusion Injury , Rats , Animals , NF-kappa B/metabolism , DNA Methylation , Lung/pathology , Lung Transplantation/adverse effects , Inflammation/pathology , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control , Oxygen/metabolism
5.
Acta Cir Bras ; 37(12): e371203, 2023.
Article in English | MEDLINE | ID: mdl-36651428

ABSTRACT

PURPOSE: Although mechanical ventilation is an essential support for acute respiratory distress syndrome (ARDS), ventilation also leads to ventilator-induced lung injury (VILI). This study aimed to estimate the effect and mechanism of Annexin A1 peptide (Ac2-26) on VILI in ARDS rats. METHODS: Thirty-two rats were randomized into the sham (S), mechanical ventilation (V), mechanical ventilation/Ac2-26 (VA), and mechanical ventilation/Ac2-26/L-NIO (VAL) groups. The S group only received anesthesia, and the other three groups received endotoxin and then ventilation for 4 h. Rats in the V, VA and VAL groups received saline, Ac2-26, and A c2-26/N5-(1-iminoethyl)-l-ornithine (L-NIO), respectively. RESULTS: All indexes deteriorated in the V, VA and VAL groups compared with the S group. Compared with V group, the PaO2/FiO2 ratio was increased, but the wet-to-dry weight ratio and protein levels in bronchoalveolar lavage fluid were decreased in the VA group. The inflammatory cells and proinflammatory factors were reduced by Ac2-26. The oxidative stress response, lung injury and apoptosis were also decreased by Ac2-26 compared to V group. All improvements of Ac2-26 were partly reversed by L-NIO. CONCLUSIONS: Ac2-26 mitigates VILI in ARDS rats and partly depended on the endothelial nitric oxide synthase pathway.


Subject(s)
Annexin A1 , Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Rats , Animals , Annexin A1/pharmacology , Annexin A1/metabolism , Nitric Oxide Synthase Type III/metabolism , Lung/metabolism , Ventilator-Induced Lung Injury/drug therapy , Bronchoalveolar Lavage Fluid , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Peptides/metabolism
6.
Commun Biol ; 5(1): 1369, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513738

ABSTRACT

Seventeen international consortia are collaborating on a human reference atlas (HRA), a comprehensive, high-resolution, three-dimensional atlas of all the cells in the healthy human body. Laboratories around the world are collecting tissue specimens from donors varying in sex, age, ethnicity, and body mass index. However, harmonizing tissue data across 25 organs and more than 15 bulk and spatial single-cell assay types poses challenges. Here, we present software tools and user interfaces developed to spatially and semantically annotate ("register") and explore the tissue data and the evolving HRA. A key part of these tools is a common coordinate framework, providing standard terminologies and data structures for describing specimen, biological structure, and spatial data linked to existing ontologies. As of April 22, 2022, the "registration" user interface has been used to harmonize and publish data on 5,909 tissue blocks collected by the Human Biomolecular Atlas Program (HuBMAP), the Stimulating Peripheral Activity to Relieve Conditions program (SPARC), the Human Cell Atlas (HCA), the Kidney Precision Medicine Project (KPMP), and the Genotype Tissue Expression project (GTEx). Further, 5,856 tissue sections were derived from 506 HuBMAP tissue blocks. The second "exploration" user interface enables consortia to evaluate data quality, explore tissue data spatially within the context of the HRA, and guide data acquisition. A companion website is at https://cns-iu.github.io/HRA-supporting-information/ .


Subject(s)
Software , Humans
7.
Digit Health ; 8: 20552076221089092, 2022.
Article in English | MEDLINE | ID: mdl-35371534

ABSTRACT

Objective: Ubiquitous internet access is reshaping the way we live, but it is accompanied by unprecedented challenges in preventing chronic diseases that are usually planted by long exposure to unhealthy lifestyles. This paper proposes leveraging online shopping behaviors as a proxy for personal lifestyle choices to improve chronic disease prevention literacy, targeted for times when e-commerce user experience has been assimilated into most people's everyday lives. Methods: Longitudinal query logs and purchase records from 15 million online shoppers were accessed, constructing a broad spectrum of lifestyle features covering various product categories and buyer personas. Using the lifestyle-related information preceding online shoppers' first purchases of specific prescription drugs, we could determine associations between their past lifestyle choices and whether they suffered from a particular chronic disease. Results: Novel lifestyle risk factors were discovered in two exemplars-depression and type 2 diabetes, most of which showed reasonable consistency with existing healthcare knowledge. Further, such empirical findings could be adopted to locate online shoppers at higher risk of these chronic diseases with decent accuracy [i.e. (area under the receiver operating characteristic curve) AUC=0.68 for depression and AUC=0.70 for type 2 diabetes], closely matching the performance of screening surveys benchmarked against medical diagnosis. Conclusions: Mining online shopping behaviors can point medical experts to a series of lifestyle issues associated with chronic diseases that are less explored to date. Hopefully, unobtrusive chronic disease surveillance via e-commerce sites can grant consenting individuals a privilege to be connected more readily with the medical profession and sophistication.

9.
Crit Care ; 25(1): 320, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34461969

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome, and the identification of homogeneous subgroups and phenotypes is the first step toward precision critical care. We aimed to explore whether ARDS phenotypes can be identified using clinical data, are reproducible and are associated with clinical outcomes and treatment response. METHODS: This study is based on a retrospective analysis of data from the telehealth intensive care unit (eICU) collaborative research database and three ARDS randomized controlled trials (RCTs) (ALVEOLI, FACTT and SAILS trials). We derived phenotypes in the eICU by cluster analysis based on clinical data and compared the clinical characteristics and outcomes of each phenotype. The reproducibility of the derived phenotypes was tested using the data from three RCTs, and treatment effects were evaluated. RESULTS: Three clinical phenotypes were identified in the training cohort of 3875 ARDS patients. Of the three phenotypes identified, phenotype I (n = 1565; 40%) was associated with fewer laboratory abnormalities, less organ dysfunction and the lowest in-hospital mortality rate (8%). Phenotype II (n = 1232; 32%) was correlated with more inflammation and shock and had a higher mortality rate (18%). Phenotype III (n = 1078; 28%) was strongly correlated with renal dysfunction and acidosis and had the highest mortality rate (22%). These results were validated using the data from the validation cohort (n = 3670) and three RCTs (n = 2289) and had reproducibility. Patients with these ARDS phenotypes had different treatment responses to randomized interventions. Specifically, in the ALVEOLI cohort, the effects of ventilation strategy (high PEEP vs low PEEP) on ventilator-free days differed by phenotype (p = 0.001); in the FACTT cohort, there was a significant interaction between phenotype and fluid-management strategy for 60-day mortality (p = 0.01). The fluid-conservative strategy was associated with improved mortality in phenotype II but had the opposite effect in phenotype III. CONCLUSION: Three clinical phenotypes of ARDS were identified and had different clinical characteristics and outcomes. The analysis shows evidence of a phenotype-specific treatment benefit in the ALVEOLI and FACTT trials. These findings may improve the identification of distinct subsets of ARDS patients for exploration in future RCTs.


Subject(s)
Phenotype , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Aged , Aged, 80 and over , Female , Fluid Therapy/methods , Fluid Therapy/standards , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/standards , Reproducibility of Results , Telemedicine/methods , Telemedicine/statistics & numerical data
10.
Ann Med ; 53(1): 653-661, 2021 12.
Article in English | MEDLINE | ID: mdl-34008449

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is characterized by severe local and systemic inflammation. Ac2-26, an Annexin A1 Peptide, can reduce the lung injury induced by reperfusion via the inhibition of inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 in ARDS. METHODS: Thirty-two rats were anaesthetized and randomized into four groups: sham (S), ARDS (A), ARDS/Ac2-26 (AA), and ARDS/Ac2-26/BOC-2 (AAB) groups. Rats in the S group received saline for intratracheal instillation, while rats in the other three groups received endotoxin for intratracheal instillation, in order to prepare the ARDS and inject the saline, Ac2-26, and Ac2-26 combined with BOC-2. After 24 h, the PaO2/FiO2 ratio was calculated. The lung tissue wet-to-dry weight ratio and the protein level in bronchoalveolar lavage fluid (BALF) were tested. Then, the cytokines in BALF and serum, and the inflammatory cells in BALF were investigated. Afterwards, the oxidative stress response and histological injury was evaluated. Subsequently, the epithelium was cultured and analyzed to estimate the effect of Ac2-26 on apoptosis. RESULTS: Compared to the S group, all indexes worsened in the A, AA, and AAB groups. Furthermore, compared to the S group, Ac2-26 significantly improved the lung injury and alveolar-capillary permeability, and inhibited the oxidative stress response. In addition, Ac2-26 reduced the local and systemic inflammation through the regulation of pro- and anti-inflammatory cytokines, and the decrease in inflammatory cells in BALF. Moreover, Ac2-26 inhibited the epithelium apoptosis induced by LPS through the modulation of apoptosis-regulated proteins. The protective effect of Ac2-26 on ARDS was partially reversed by the FPR inhibitor, BOC-2. CONCLUSION: Ac2-26 reduced the lung injury induced by LPS, promoted alveolar-capillary permeability, ameliorated the local and systemic inflammation, and inhibited the oxidative stress response and apoptosis. The protection of Ac2-26 on ARDS was mainly dependent on the FPR pathway.


Subject(s)
Lung Injury , Respiratory Distress Syndrome , Animals , Cytokines , Humans , Inflammation , Lipopolysaccharides , Lung , Rats , Receptors, Formyl Peptide , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy
11.
Mediators Inflamm ; 2021: 1946384, 2021.
Article in English | MEDLINE | ID: mdl-33927569

ABSTRACT

BACKGROUND: The recombinant protein diannexin can inhibit platelet-mediated events, which contribute to acute respiratory distress syndrome (ARDS). Here, we investigated the effect of diannexin and its effect on heme oxygenase-1 (HO-1) in ARDS. METHODS: A total of 32 rats were randomized into sham, ARDS, diannexin (D), and diannexin+HO-1 inhibitor (DH) groups. Alveolar-capillary permeability was evaluated by testing the partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) ratio, lung wet/dry weight ratio, and protein levels in the lung. Inflammation was assessed by measuring cytokine levels in the bronchial alveolar lavage fluid (BALF) and serum and nuclear factor-κB (NF-κB) in the lung tissue. Inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and myeloperoxidase (MPO) were measured to evaluate the oxidative stress response. Lung tissue pathology and apoptosis were also evaluated. We measured HO-1 expression in the lung tissue to investigate the effect of diannexin on HO-1 in ARDS. RESULTS: Compared with the ARDS group, diannexin improved PaO2/FiO2, lung wet/dry weight ratio, and protein levels in the BALF and decreased levels of cytokines and NF-κB in the lung and serum. Diannexin inhibited the oxidative stress response and significantly ameliorated pathological lung injury and apoptosis. The partial reversal of diannexin effects by a HO-1 inhibitor suggests that diannexin may promote HO-1 expression to ameliorate ARDS. CONCLUSIONS: We showed that diannexin can improve alveolar-capillary permeability, inhibit the oxidative stress response and inflammation, and protect against ARDS-induced lung injury and apoptosis.


Subject(s)
Annexin A5/therapeutic use , Heme Oxygenase-1/physiology , Respiratory Distress Syndrome/drug therapy , Animals , Annexin A5/pharmacology , Apoptosis/drug effects , Blood Coagulation/drug effects , Capillary Permeability/drug effects , Heme Oxygenase-1/genetics , Inflammation/prevention & control , Male , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Respiratory Distress Syndrome/metabolism
12.
Biomed Res Int ; 2021: 9589313, 2021.
Article in English | MEDLINE | ID: mdl-33628830

ABSTRACT

[This corrects the article DOI: 10.1155/2018/7507314.].

14.
Stem Cell Res Ther ; 11(1): 246, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32586365

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in severe lung injury via inflammation and endothelial injury. The aim of this study was to evaluate the effect of endothelial colony-forming cells (ECFCs) on lung injury in rats subjected to CPB. METHODS: Thirty-two rats were randomized into the sham, CPB, CPB/ECFC and CPB/ECFC/L-NIO groups. The rats in the sham group received anaesthesia, and the rats in the other groups received CPB. The rats also received PBS, ECFCs and L-NIO-pre-treated ECFCs. After 24 h of CPB, pulmonary capillary permeability, including the PaO2/FiO2 ratio, protein levels in bronchoalveolar lavage fluid (BALF) and lung tissue wet/dry weight were evaluated. The cell numbers and cytokines in BALF and peripheral blood were tested. Endothelial injury, lung histological injury and apoptosis were assessed. The oxidative stress response and apoptosis-related proteins were analysed. RESULTS: After CPB, all the data deteriorated compared with those obtained in the S group (sham vs CPB vs CPB/ECFC vs CPB/ECFC/L-NIO: histological score 1.62 ± 0.51 vs 5.37 ± 0.91 vs 3.37 ± 0.89 vs 4.37 ± 0.74; PaO2/FiO2 389 ± 12 vs 233 ± 36 vs 338 ± 28 vs 287 ± 30; wet/dry weight 3.11 ± 0.32 vs 6.71 ± 0.73 vs 4.66 ± 0.55 vs 5.52 ± 0.57; protein levels in BALF: 134 ± 22 vs 442 ± 99 vs 225 ± 41 vs 337 ± 53, all P < 0.05). Compared to the CPB treatment, ECFCs significantly improved pulmonary capillary permeability and PaO2/FiO2. Similarly, ECFCs also decreased the inflammatory cell number and pro-inflammatory factors in BALF and peripheral blood, as well as the oxidative stress response in the lung tissue. ECFCs reduced the lung histological injury score and apoptosis and regulated apoptosis-related proteins in the lung tissue. Compared with the CPB/ECFC group, all the indicators were partly reversed by the L-NIO. CONCLUSIONS: ECFCs significantly reduced lung injury induced by inflammation after CPB.


Subject(s)
Lung Injury , Animals , Cardiopulmonary Bypass/adverse effects , Endothelial Cells , Lung , Lung Injury/etiology , Rats , Rats, Sprague-Dawley
15.
Front Cardiovasc Med ; 7: 29, 2020.
Article in English | MEDLINE | ID: mdl-32232057

ABSTRACT

Several ongoing international efforts are developing methods of localizing single cells within organs or mapping the entire human body at the single cell level, including the Chan Zuckerberg Initiative's Human Cell Atlas (HCA), and the Knut and Allice Wallenberg Foundation's Human Protein Atlas (HPA), and the National Institutes of Health's Human BioMolecular Atlas Program (HuBMAP). Their goals are to understand cell specialization, interactions, spatial organization in their natural context, and ultimately the function of every cell within the body. In the same way that the Human Genome Project had to assemble sequence data from different people to construct a complete sequence, multiple centers around the world are collecting tissue specimens from diverse populations that vary in age, race, sex, and body size. A challenge will be combining these heterogeneous tissue samples into a 3D reference map that will enable multiscale, multidimensional Google Maps-like exploration of the human body. Key to making alignment of tissue samples work is identifying and using a coordinate system called a Common Coordinate Framework (CCF), which defines the positions, or "addresses," in a reference body, from whole organs down to functional tissue units and individual cells. In this perspective, we examine the concept of a CCF based on the vasculature and describe why it would be an attractive choice for mapping the human body.

16.
Cell Transplant ; 28(12): 1674-1685, 2019 12.
Article in English | MEDLINE | ID: mdl-31526054

ABSTRACT

Ventilator-induced lung injury (VILI) is a common complication that results from treatment with mechanical ventilation (MV) in acute respiratory distress syndrome (ARDS) patients. The present study investigated the effect of endothelial progenitor cell (EPC) transplantation on VILI. Wistar rats were divided into three groups (n = 8): sham (S), VILI model (V) induced by tidal volume ventilation (17 mL/kg), and VILI plus EPC transplantation (VE) groups. The lung PaO2/FiO2 ratio, pulmonary wet-to-dry (W/D) weight ratio, number of neutrophils, total protein, neutrophil elastase level, and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were examined. Furthermore, the histological and apoptotic analysis, and lung tissue protein expression analysis of Bax, Bcl-2, cleaved caspase-3, matrix metalloproteinase (MMP)-9, total nuclear factor kappa B (total-NF-κB), phosphorylated NF-κB (phospho-NF-κB) and myosin light chain (MLC) were performed. The ventilation-induced decrease in PaO2/FiO2 ratio, and the increase in W/D ratio and total protein concentration were prevented by the EPC transplantation. The EPC transplantation (VE group) significantly attenuated the VILI-induced increased expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-8, MMP-9, phospho-NF-κB and MLC, neutrophil elastase levels and neutrophil counts in BALF. In addition, the anti-inflammatory factor IL-10 increased in the VE group. Furthermore, pulmonary histological injury and apoptosis (TUNEL-positive cells, increase in Bax and cleaved caspase-3) were considerably diminished by the EPC transplantation. The EPC transplantation ameliorated the VILI. The mechanism may be primarily through the improvement of epithelial permeability, inhibition of local and systemic inflammation, and reduction in apoptosis.


Subject(s)
Endothelial Progenitor Cells , Gene Expression Regulation , Lung , Stem Cell Transplantation , Ventilator-Induced Lung Injury , Allografts , Animals , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Endothelial Progenitor Cells/transplantation , Lung/metabolism , Lung/pathology , Male , Rats , Rats, Wistar , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/therapy
17.
Biomed Pharmacother ; 117: 109194, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31387174

ABSTRACT

BACKGROUND: Lung ischemia-reperfusion injury (LIRI) is a major complication after lung transplantation. Annexin A1 (AnxA1) ameliorates inflammation in various injured organs. This study aimed to determine the effects and mechanism of AnxA1 on LIRI after lung transplantation. METHODS: Thirty-two rats were randomized into sham, saline, Ac2-26 and Ac2-26/L groups. Rats in the saline, Ac2-26 and Ac2-26/L groups underwent left lung transplantation and received saline, Ac2-26, and Ac2-26/L-NIO, respectively. After 24 h of reperfusion, serum and transplanted lung tissues were examined. RESULTS: The partial pressure of oxygen (PaO2) was increased in the Ac2-26 group compared to that in the saline group but was decreased by L-NIO treatment. In the Ac2-26 group, the wet-to-dry (W/D) weight ratios, total protein concentrations, proinflammatory factors and inducible nitric oxide synthase levels were notably decreased, but the concentrations of anti-inflammatory factors and endothelial nitric oxide synthase levels were significantly increased. Ac2-26 attenuated histological injury and cell apoptosis, and this improvement was reversed by L-NIO. CONCLUSIONS: Ac2-26 reduced LIRI and improved alveoli-capillary permeability by inhibiting oxygen stress, inflammation and apoptosis. The protective effect of Ac2-26 on LIRI largely depended on the endothelial nitric oxide synthase pathway.


Subject(s)
Annexin A1/pharmacology , Lung Injury/metabolism , Lung/drug effects , Lung/metabolism , Peptides/pharmacology , Reperfusion Injury/metabolism , Animals , Annexin A1/metabolism , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Inflammation/metabolism , Male , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Sprague-Dawley
18.
World Neurosurg ; 119: e765-e773, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30096509

ABSTRACT

OBJECTIVE: Traumatic brain injury (TBI) is a devastating neurologic injury and remains a major cause of death in the world. Secondary injury after TBI is associated with long-term disability in patients with TBI. This study evaluated adrenomedullin (AM) on secondary injury and neurologic functional outcome in rats after TBI. METHODS: Forty-eight Sprague Dawley rats were randomly assigned into 3 groups: sham, TBI, and TBI with AM groups. TBI was induced by fluid percussion injury, and AM was intravenously injected. Neurologic function was examined at 2, 3, and 7 days after TBI. Enzyme-linked immunosorbent assay was used to test tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-8 levels in the brain. Brain edema and blood-brain barrier (BBB) permeability in brain tissue were tested. Western blot was used to examine the expression of aquaporin-4, phosphorylated myosin light-chain, and cleaved caspase-3. Terminal deoxynucleotidyl transferase dUTP nick end labeling was used to test the apoptosis. RESULTS: Compared with the sham group, TNF-α, IL-1ß, and IL-6 levels, brain edema, BBB permeability, neurologic examination scores, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, and expression of aquaporin-4, phosphorylated myosin light-chain, and cleaved caspase-3 significantly increased in the TBI group. AM treatment significantly inhibited TBI-induced effects. CONCLUSIONS: AM can improve neurologic function and ameliorate brain injury in rats with TBI. AM exerts its neuroprotective effect via its anti-inflammatory and antiapoptotic effect.


Subject(s)
Adrenomedullin/pharmacology , Brain Injuries, Traumatic/prevention & control , Neuroprotective Agents/pharmacology , Animals , Apoptosis/drug effects , Blood-Brain Barrier/drug effects , Brain Diseases/physiopathology , Brain Edema/prevention & control , Neurologic Examination , Nociception/physiology , Posture/physiology , Rats, Sprague-Dawley , Reaction Time/physiology , Walking/physiology
19.
Arch Med Res ; 49(3): 172-181, 2018 04.
Article in English | MEDLINE | ID: mdl-30119979

ABSTRACT

BACKGROUND: Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). AIM OF THE STUDY: This study investigated whether endothelial colony-forming cells (ECFC) could inhibit VILI in a rat model of acute respiratory distress syndrome (ARDS). METHODS: Male Wistar rats received the femoral artery and venous cannulation (sham group) or were injected intravenously with 500 µg/kg lipopolysaccharide to induce ARDS. The ARDS rats were subjected to MV. Immediately after the MV, the rats were randomized and injected intravenously with vehicle (ARDS group) or ECFC (ECFC group, n = 8 per group). The oxygen index, lung wet-to-dry weight (W/D) ratios, cytokine protein levels in serum or bronchoalveolar lavage fluid (BALF), neutrophil counts, neutrophil elastase and total protein levels in BALF, histology and cell apoptosis in the lung were detected. The protein levels of endothelin-1, inducible nitric oxide synthase (iNOS), endothelial NOS, matrix metalloproteinase (MMP)-9, Bax, Bcl-2, gelsolin, cleaved caspase-3, phosphorylated NF-κBp65 and myosin light chain (MLC) in the lung were analyzed. RESULTS: Compared with the ARDS group, treatment with ECFC significantly increased the oxygen index, and decreased the lung W/D ratios and injury, and the numbers of apoptotic cells in the lungs, neutrophils counts, total protein and elastase concentrations in BALF of rats. ECFC treatment significantly minimized the protein levels of pro-inflammatory cytokines in BALF and serum, but increased interleukin 10 in rats. Furthermore, ECFC treatment significantly reduced the protein levels of endothelin-1, iNOS, Bax, Gelsolin, MMP-9, cleaved caspase-3, phosphorylated NF-κBp65 and MLC, but enhanced eNOS and Bcl-2 in the lungs of rats. CONCLUSIONS: Therefore, ECFC attenuated inflammation, cell apoptosis and VILI in ARDS rats.


Subject(s)
Apoptosis/physiology , Endothelial Cells/metabolism , Lung/pathology , Respiratory Distress Syndrome/pathology , Ventilator-Induced Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid , Caspase 3 , Cytokines/metabolism , Inflammation/metabolism , Leukocyte Count , Lipopolysaccharides , Male , Neutrophils/pathology , Oxygen/metabolism , Proto-Oncogene Proteins c-bcl-2 , Rats , Rats, Wistar , Respiration, Artificial
20.
Biomed Res Int ; 2018: 7507314, 2018.
Article in English | MEDLINE | ID: mdl-29670906

ABSTRACT

Ventilator-induced lung injury aggravates the existing lung injury. This study investigated the effect of desflurane on VILI in a rat model of acute respiratory distress syndrome. Forty-eight rats were randomized into a sham (S) group, control (C) group, lipopolysaccharide/ventilation (LV) group, lipopolysaccharide/ventilation/desflurane (LVD) group, or lipopolysaccharide/low ventilation with and without desflurane (LLV and LLVD) groups. Rats in the S group received anesthesia only. Rats in the LV and LVD groups received lipopolysaccharide and were ventilated with a high tidal volume. Rats in LLV and LLVD groups were treated as the LV and LVD groups and ventilated with a low tidal volume. PaO2/FiO2, lung wet-to-dry weight ratios, concentrations of inflammatory factors in serum and BALF, histopathologic analysis of lung tissue, and levels of nuclear factor- (NF-) κB protein in lung tissue were investigated. PaO2/FiO2 was significantly increased by desflurane. Total cell count, macrophages, and neutrophils in BALF and proinflammatory factors in BALF and serum were significantly decreased by desflurane, while IL-10 was increased. The histopathological changes and levels of NF-κB protein in lung tissue were decreased by desflurane. The results indicated that desflurane ameliorated VILI in a rat model of acute respiratory distress syndrome.


Subject(s)
Isoflurane/analogs & derivatives , Respiratory Distress Syndrome/drug therapy , Ventilator-Induced Lung Injury/drug therapy , Animals , Desflurane , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Isoflurane/pharmacology , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Rats , Rats, Wistar , Respiration, Artificial/methods , Respiratory Distress Syndrome/metabolism , Tidal Volume/drug effects , Tumor Necrosis Factor-alpha/metabolism , Ventilator-Induced Lung Injury/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...