Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(8): 21288-21298, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36269487

ABSTRACT

Sea cucumber Apostichopus japonicas (Selenka) is one of the important aquaculture species distributed in northern China. In recent years, global warming caused frequent high temperature weather in summer in northern China, resulting in dramatic losses of the sea cucumber aquaculture industry. In the present study, we focused on the effect of oxidative stress in Apostichopus japonicus (Selenka) subjected to high temperature stress. Sea cumbers were exposed to the control (16 °C), and high temperature treatments (20 °C, 24 °C, and 28 °C) for 7 days. Then, reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, reduced glutathione (GSH) content, malondialdehyde (MDA) content and 8-hydroxy-2'-deoxyguanosine (8-OHdG) level in the respiratory tree and body wall were detected, respectively. Results showed that 24 °C and 28 °C acute exposure induced the elevation of ROS level, SOD, CAT, POD activities, GSH content, MDA content and 8-OHdG level in the respiratory tree of sea cucumber. In contrast, no significant changes were observed for ROS and 8-OHdG levels in the body wall of sea cucumber, while the antioxidants including SOD, CAT, POD, and GSH decreased to some extent. Moreover, MDA content exhibited a noticeable increase in the body wall, similarly to that in the respiratory tree, indicating that high temperature could induce severe lipid peroxidation in two tissues. Considering the differences in various biomarkers measured in two tissues, respiratory tree might be more susceptible to the high temperature changes compared to the body wall. Our findings may help understand the oxidative stress response to high temperature in the respiratory tree and the body wall in A. japonicus.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Antioxidants/metabolism , Oxidative Stress , Reactive Oxygen Species/pharmacology , Sea Cucumbers/metabolism , Superoxide Dismutase/metabolism , Temperature
2.
PeerJ ; 10: e13298, 2022.
Article in English | MEDLINE | ID: mdl-35462773

ABSTRACT

Heavy fuel oil (HFO) spills pose serious threat to coastlines and sensitive resources. Stranded HFO that occurs along the coastline could cause long-term and massive damage to the marine environment and indirectly affect the survival of parental marine invertebrates. However, our understanding of the complex associations within invertebrates is primarily limited, particularly in terms of the toxicity effects on the offspring when parents are exposed to stranded HFO. Here, we investigated the persistent effects on the early development stage of the offspring following stranded HFO exposure on the sea urchin Strongylocentrotus intermedius. After 21 d exposure, sea urchins exhibited a significant decrease in the reproductive capacity; while the reactive oxygen species level, 3-nitrotyrosine protein level, protein carbonyl level, and heat shock proteins 70 expression in the gonadal tissues and gametes significantly increased as compared to the controls, indicating that HFO exposure could cause development toxicity on offspring in most traits of larval size. These results suggested that the stranded HFO exposure could increase oxidative stress of gonadal tissues, impair reproductive functions in parental sea urchins, and subsequently impact on development of their offspring. This study provides valuable information regarding the persistent toxicity effects on the offspring following stranded HFO exposure on sea urchins.


Subject(s)
Fuel Oils , Strongylocentrotus , Animals , Fuel Oils/toxicity , Larva , Reproduction , Aquatic Organisms
3.
Article in English | MEDLINE | ID: mdl-33435413

ABSTRACT

The purpose of this study was to explore and compare the sex-specific differences in the toxic effects of water-accommodated fractions of 380# heavy fuel oil (HFO WAF) on the sea urchin Strongylocentrotus intermedius. Sea urchins were acutely exposed to HFO WAF at different nominal concentrations (0%, 10% and 20%) for seven days. The results showed that females had a higher polycyclic aromatic hydrocarbons (PAHs) bioaccumulation in gonad tissues and that both the total antioxidant capacity (TAC) and lipid peroxidation (LPO) levels in the gonad tissues of females were much higher than those of males. The PAHs bioaccumulation in gametes indicated that parents' exposure could lead to a transfer of PAHs to their offspring, and eggs had higher TAC and LPO than sperms. After maternal and paternal exposure to HFO WAF, the frequency of morphological abnormalities of the offspring was increased when compared to the control. Overall, these results indicated that maternal exposure to HFO WAF could cause more significantly toxic effects on sea urchins than paternal exposure could, which could lead to more significantly negative effects on their offspring.


Subject(s)
Fuel Oils , Polycyclic Aromatic Hydrocarbons , Strongylocentrotus , Water Pollutants, Chemical , Animals , Female , Male , Polycyclic Aromatic Hydrocarbons/toxicity , Sex Characteristics , Water Pollutants, Chemical/toxicity
4.
Article in English | MEDLINE | ID: mdl-33477823

ABSTRACT

Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present study, we treated sea cucumber with elevated temperature (26 °C) alone, water-accommodated fractions (WAF) of Oman crude oil at an optimal temperature of 16 °C, and Oman crude oil WAF at an elevated temperature of 26 °C for 24 h. Results showed that reactive oxygen species (ROS) level and total antioxidant capacity in WAF at 26 °C treatment were higher than that in WAF at 16 °C treatment, as evidenced by 6.03- and 1.31-fold-higher values, respectively. Oxidative damage assessments manifested that WAF at 26 °C treatment caused much severer oxidative damage of the biomacromolecules (including DNA, proteins, and lipids) than 26 °C or WAF at 16 °C treatments did. Moreover, compared to 26 °C or WAF at 16 °C treatments, WAF at 26 °C treatment induced a significant increase in cellular apoptosis by detecting the caspase-3 activity. Our results revealed that co-exposure to elevated temperature and crude oil could simulate higher ROS levels and subsequently cause much severer oxidative damage and cellular apoptosis than crude oil alone on sea cucumber.


Subject(s)
Petroleum Pollution/adverse effects , Petroleum/toxicity , Sea Cucumbers/drug effects , Stichopus/drug effects , Temperature , Water Pollutants, Chemical/toxicity , Animals , Apoptosis , Oman , Oxidative Stress , Stichopus/classification , Stichopus/physiology
5.
Sci Total Environ ; 763: 143053, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33129528

ABSTRACT

To further understand the underlying mechanisms involved in the developmental toxicity of crude oil and chemically dispersed crude oil on fish early-life stages (ELS), zebrafish (Danio rerio) embryos were exposed to GM-2 chemical dispersant (DISP), low-energy water-accommodated fractions (LEWAF), and chemically enhanced WAF (CEWAF) of Merey crude oil at sublethal concentrations for 120 h. We employed the General Morphology Score (GMS) and General Teratogenic Score (GTS) systems in conjunction with high-throughput RNA-Seq analysis to evaluate the phenotypic and transcriptomic responses in zebrafish ELS. Results showed that ΣPAHs concentrations in LEWAF and CEWAF solutions were 507.63 ± 80.95 ng·L-1 and 4039.51 ± 241.26 ng·L-1, respectively. The GMS and GTS values indicated that CEWAF exposure caused more severe developmental delay and higher frequencies of teratogenic effects than LEWAF exposure. Moreover, no significant change in heart rate was observed in LEWAF treatment, while CEWAF exposure caused a significant reduction in heart rate. LEWAF and CEWAF exposure exhibited an overt change in eye area, with a reduction of 4.0% and 25.3% (relative to the control), respectively. Additionally, no obvious impact on phenotypic development was observed in zebrafish embryo-larvae following DISP exposure. Significant changes in gene expression were detected in LEWAF and CEWAF treatments, with a total of 957 and 2062 differentially expressed genes (DEGs), respectively, while DISP exposure altered only 91 DEGs. Functional enrichment analysis revealed that LEWAF and CEWAF exposure caused significant perturbations in the pathways associated with phototransduction, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and immune response-related pathways. Our results provide more valid evidence to corroborate the previous suggestion that ocular impairment is an equal or possibly more sensitive biomarker than cardiotoxicity in fish ELS exposed to oil-derived PAHs. All these findings could gain further mechanistic insights into the effects of crude oil and chemical dispersant on fish ELS.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Petroleum Pollution/adverse effects , Transcriptome , Water Pollutants, Chemical/toxicity , Zebrafish
6.
Environ Sci Process Impacts ; 20(10): 1404-1413, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30183053

ABSTRACT

The unsourced oil contamination on the coast of Bohai Sea has recently attracted scholars to study the formation of sunken and suspended oils (SSO) from oil slicks on the sea surface. In this research, batch experiments have been conducted to study the time-scale effect of the different concentrations of suspended sediments on the formation of sunken oils and suspended oils using three oils (Oman crude oil, Merey crude oil, and 380# fuel oil) and two sediments (sand and silt) at different temperatures. The results showed that the sunken and suspended oils formed quickly within the mixing time and reached a maximum at the equilibrium time, te, and that te had a wide range of variation with sediment concentration and type. The oil sinking and submerging efficiency could reach up to 6.33%, 43.82% and 44.44% for 380# fuel oil, Oman crude oil and Merey crude oil, respectively. It is noted that the increase in sediment concentration and environmental temperature could enhance the formation of SSO but that it had a close relationship with the oil type. Overall, hydrophobic sand had a significantly higher oil sedimentation effect than silt.


Subject(s)
Geologic Sediments , Petroleum Pollution , Petroleum/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , China , Pacific Ocean , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...