Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
NPJ Digit Med ; 7(1): 17, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253738

ABSTRACT

Artificial intelligence (AI)-assisted PET imaging is emerging as a promising tool for the diagnosis of Parkinson's disease (PD). We aim to systematically review the diagnostic accuracy of AI-assisted PET in detecting PD. The Ovid MEDLINE, Ovid Embase, Web of Science, and IEEE Xplore databases were systematically searched for related studies that developed an AI algorithm in PET imaging for diagnostic performance from PD and were published by August 17, 2023. Binary diagnostic accuracy data were extracted for meta-analysis to derive outcomes of interest: area under the curve (AUC). 23 eligible studies provided sufficient data to construct contingency tables that allowed the calculation of diagnostic accuracy. Specifically, 11 studies were identified that distinguished PD from normal control, with a pooled AUC of 0.96 (95% CI: 0.94-0.97) for presynaptic dopamine (DA) and 0.90 (95% CI: 0.87-0.93) for glucose metabolism (18F-FDG). 13 studies were identified that distinguished PD from the atypical parkinsonism (AP), with a pooled AUC of 0.93 (95% CI: 0.91 - 0.95) for presynaptic DA, 0.79 (95% CI: 0.75-0.82) for postsynaptic DA, and 0.97 (95% CI: 0.96-0.99) for 18F-FDG. Acceptable diagnostic performance of PD with AI algorithms-assisted PET imaging was highlighted across the subgroups. More rigorous reporting standards that take into account the unique challenges of AI research could improve future studies.

2.
Transl Neurodegener ; 12(1): 34, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37381042

ABSTRACT

BACKGROUND: Gaining more information about the reciprocal associations between different biomarkers within the ATN (Amyloid/Tau/Neurodegeneration) framework across the Alzheimer's disease (AD) spectrum is clinically relevant. We aimed to conduct a comprehensive head-to-head comparison of plasma and positron emission tomography (PET) ATN biomarkers in subjects with cognitive complaints. METHODS: A hospital-based cohort of subjects with cognitive complaints with a concurrent blood draw and ATN PET imaging (18F-florbetapir for A, 18F-Florzolotau for T, and 18F-fluorodeoxyglucose [18F-FDG] for N) was enrolled (n = 137). The ß-amyloid (Aß) status (positive versus negative) and the severity of cognitive impairment served as the main outcome measures for assessing biomarker performances. RESULTS: Plasma phosphorylated tau 181 (p-tau181) level was found to be associated with PET imaging of ATN biomarkers in the entire cohort. Plasma p-tau181 level and PET standardized uptake value ratios of AT biomarkers showed a similarly excellent diagnostic performance for distinguishing between Aß+ and Aß- subjects. An increased tau burden and glucose hypometabolism were significantly associated with the severity of cognitive impairment in Aß+ subjects. Additionally, glucose hypometabolism - along with elevated plasma neurofilament light chain level - was related to more severe cognitive impairment in Aß- subjects. CONCLUSION: Plasma p-tau181, as well as 18F-florbetapir and 18F-Florzolotau PET imaging can be considered as interchangeable biomarkers in the assessment of Aß status in symptomatic stages of AD. 18F-Florzolotau and 18F-FDG PET imaging could serve as biomarkers for the severity of cognitive impairment. Our findings have implications for establishing a roadmap to identifying the most suitable ATN biomarkers for clinical use.


Subject(s)
Alzheimer Disease , Fluorodeoxyglucose F18 , Humans , Positron-Emission Tomography , Alzheimer Disease/diagnostic imaging , Glucose , tau Proteins , Cognition
3.
J Alzheimers Dis ; 93(4): 1395-1406, 2023.
Article in English | MEDLINE | ID: mdl-37182878

ABSTRACT

BACKGROUND: Metabolic asymmetry has been observed in Alzheimer's disease (AD), but different studies have inconsistent viewpoints. OBJECTIVE: To analyze the asymmetry of cerebral glucose metabolism in AD and investigate its clinical significance and potential metabolic network abnormalities. METHODS: Standardized uptake value ratios (SUVRs) were obtained from 18F-FDG positron emission tomography (PET) images of all participants, and the asymmetry indices (AIs) were calculated according to the SUVRs. AD group was divided into left/right-dominant or bilateral symmetric hypometabolism (AD-L/AD-R or AD-BI) when more than half of the AIs of the 20 regions of interest (ROIs) were < -2SD, >2SD, or between±1SD. Differences in clinical features among the three AD groups were compared, and the abnormal network characteristics underlying metabolic asymmetry were explored. RESULTS: In AD group, the proportions of AD-L, AD-R, and AD-BI were 28.4%, 17.9%, and 18.5%, respectively. AD-L/AD-R groups had younger age of onset and faster rate of cognitive decline than AD-BI group (p < 0.05). The absolute values of AIs in half of the 20 ROIs became higher at follow-up than at baseline (p < 0.05). Compared with those in AD-BI group, metabolic connection strength of network, global efficiency, cluster coefficient, degree centrality and local efficiency were lower, but shortest path length was longer in AD-L and AD-R groups (p < 0.05). CONCLUSION: Asymmetric and symmetric hypometabolism may represent different clinical subtypes of AD, which may provide a clue for future studies on the heterogeneity of AD and help to optimize the design of clinical trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/metabolism , Metabolic Networks and Pathways , Positron-Emission Tomography/methods
4.
Eur Radiol ; 33(7): 4567-4579, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37099173

ABSTRACT

OBJECTIVES: Quantification of tau accumulation using positron emission tomography (PET) is critical for the diagnosis of Alzheimer's disease (AD). This study aimed to evaluate the feasibility of 18F-florzolotau quantification in patients with AD using a magnetic resonance imaging (MRI)-free tau PET template, since individual high-resolution MRI is costly and not always available in practice. METHODS: 18F-florzolotau PET and MRI scans were obtained in a discovery cohort including (1) patients within the AD continuum (n = 87), (2) cognitively impaired patients with non-AD (n = 32), and (3) cognitively unimpaired subjects (n = 26). The validation cohort comprised 24 patients with AD. Following MRI-dependent spatial normalization (standard approach) in randomly selected subjects (n = 40) to cover the entire spectrum of cognitive function, selected PET images were averaged to create the 18F-florzolotau-specific template. Standardized uptake value ratios (SUVRs) were calculated in five predefined regions of interest (ROIs). MRI-free and MRI-dependent methods were compared in terms of continuous and dichotomous agreement, diagnostic performances, and associations with specific cognitive domains. RESULTS: MRI-free SUVRs had a high continuous and dichotomous agreement with MRI-dependent measures for all ROIs (intraclass correlation coefficient ≥ 0.980; agreement ≥ 94.5%). Similar findings were observed for AD-related effect sizes, diagnostic performances with respect to categorization across the cognitive spectrum, and associations with cognitive domains. The robustness of the MRI-free approach was confirmed in the validation cohort. CONCLUSIONS: The use of an 18F-florzolotau-specific template is a valid alternative to MRI-dependent spatial normalization, improving the clinical generalizability of this second-generation tau tracer. KEY POINTS: • Regional 18F-florzolotau SUVRs reflecting tau accumulation in the living brains are reliable biomarkers for the diagnosis, differential diagnosis, and assessment of disease severity in patients with AD. • The 18F-florzolotau-specific template is a valid alternative to MRI-dependent spatial normalization, improving the clinical generalizability of this second-generation tau tracer.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Feasibility Studies , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Brain/pathology , tau Proteins/metabolism
5.
Clin Nucl Med ; 48(5): 400-403, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36947853

ABSTRACT

PURPOSE: This study aimed to optimize the analysis of cingulate island sign (CIS) to improve its diagnostic accuracy in discriminating dementia with Lewy bodies (DLB) from Alzheimer disease (AD). PATIENTS AND METHODS: Patients with DLB (n = 80), AD (n = 75), and normal controls (n = 22) with 18 F-FDG PET imaging were enrolled in this study. Sixty-two DLB patients also underwent dopaminergic PET scans. The optimized/conventional CIS ratios and metabolism in associated brain regions were evaluated by diagnostic accuracy among groups and correlation with cognitive/dopaminergic dysfunction. RESULTS: In discriminating DLB from AD, the optimized CIS ratio calculated by dorsal posterior cingulate cortex (PCC)/lateral occipital lobe metabolism achieved the highest specificity, sensitivity, and accuracy at 0.907, 0.750, and 0.825, respectively. The metabolism of dorsal-PCC positively correlated with cognitive impairment in DLB patients cross-sectionally and longitudinally ( P < 0.001, r = 0.601; P = 0.044, r = 0.645), and also correlated with dopaminergic impairment in the caudate ( P = 0.048, r = 0.315). CONCLUSIONS: Optimized CIS ratios of incorporated metabolic activity of dorsal-PCC and occipital subregions are clinically useful for differentiating DLB from AD, in which dorsal-PCC metabolism may provide an objective biomarker to reflect the severity of cognitive impairment in DLB.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Alzheimer Disease/metabolism , Lewy Body Disease/diagnostic imaging , Positron-Emission Tomography , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Fluorodeoxyglucose F18
6.
Brain Sci ; 13(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36831910

ABSTRACT

Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) are closely associated with Tau proteins accumulation. In this study, we aimed to implement radiomics analysis to discover high-order features from pathological biomarker and improve the classification accuracy based on Tau PET images. Two cross-racial independent cohorts from the ADNI database (121 AD patients, 197 MCI patients and 211 normal control (NC) subjects) and Huashan hospital (44 AD patients, 33 MCI patients and 36 NC subjects) were enrolled. The radiomics features of Tau PET imaging of AD related brain regions were computed for classification using a support vector machine (SVM) model. The radiomics model was trained and validated in the ADNI cohort and tested in the Huashan hospital cohort. The standard uptake value ratio (SUVR) and clinical scores model were also performed to compared with radiomics analysis. Additionally, we explored the possibility of using Tau PET radiomics features as a good biomarker to make binary identification of Tau-negative MCI versus Tau-positive MCI or apolipoprotein E (ApoE) ε4 carrier versus ApoE ε4 non-carrier. We found that the radiomics model demonstrated best classification performance in differentiating AD/MCI patients and NC in comparison to SUVR and clinical scores models, with an accuracy of 84.8 ± 4.5%, 73.1 ± 3.6% in the ANDI cohort. Moreover, the radiomics model also demonstrated greater performance in diagnosing AD than other methods in the Huashan hospital cohort, with an accuracy of 81.9 ± 6.1%. In addition, the radiomics model also showed the satisfactory classification performance in the MCI-tau subgroup experiment (72.3 ± 3.5%, 71.9 ± 3.6% and 63.7 ± 5.9%) and in the MCI-ApoE subgroup experiment (73.5 ± 4.3%, 70.1 ± 3.9% and 62.5 ± 5.4%). In conclusion, our study showed that based on Tau PET radiomics analysis has the potential to guide and facilitate clinical diagnosis, further providing evidence for identifying the risk factors in MCI patients.

7.
Mov Disord ; 38(4): 579-588, 2023 04.
Article in English | MEDLINE | ID: mdl-36750757

ABSTRACT

BACKGROUND: Recent development in tau-sensitive tracers has sparkled significant interest in tracking tauopathies using positron emission tomography (PET) biomarkers. However, the ability of 18 F-florzolotau PET imaging to topographically characterize tau pathology in corticobasal syndrome (CBS) remains unclear. Further, the question as to whether disease-level differences exist with other neurodegenerative tauopathies is still unanswered. OBJECTIVE: To analyze the topographical patterns of tau pathology in the living brains of patients with CBS using 18 F-florzolotau PET imaging and to examine whether differences with other tauopathies exist. METHODS: 18 F-florzolotau PET imaging was performed in 20 consecutive patients with CBS, 20 cognitively healthy controls (HCs), 20 patients with Alzheimer's disease (AD), and 16 patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). Cerebrospinal fluid (CSF) levels of ß-amyloid biomarkers were quantified in all patients with CBS. 18 F-florzolotau uptake was quantitatively assessed using standardized uptake value ratios. RESULTS: Of the 20 patients with CBS, 19 (95%) were negative for CSF biomarkers of amyloid pathology; of them, three had negative 18 F-florzolotau PET findings. Compared with HCs, patients with CBS showed increased 18 F-florzolotau signals in both cortical and subcortical regions. In addition, patients with CBS were characterized by higher tracer retentions in subcortical regions compared with those with AD and showed a trend toward higher signals in cortical areas compared with PSP-RS. An asymmetric pattern of 18 F-florzolotau uptake was associated with an asymmetry of motor severity in patients with CBS. CONCLUSIONS: In vivo 18 F-florzolotau PET imaging holds promise for distinguishing CBS in the spectrum of neurodegenerative tauopathies. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Corticobasal Degeneration , Positron-Emission Tomography , Tauopathies , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Corticobasal Degeneration/diagnostic imaging , Fluorine Radioisotopes , Positron-Emission Tomography/methods , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , tau Proteins/metabolism , Tauopathies/diagnostic imaging
9.
Brain Sci ; 12(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36291289

ABSTRACT

PURPOSE: 18F-Florzolotau is a novel second-generation tau radiotracer that shows higher binding affinity and selectivity and no off-target binding. The proportion loss of functional connectivity strength (PLFCS) is a new indicator for representing brain functional connectivity (FC) alteration. This study aims to estimate the relationship between the regional tau accumulation and brain FC abnormality in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients based on Florzolotau PET and fMRI. METHODS: 22 NC (normal control), 31 MCI and 42 AD patients who have already been scanned with 18F-Florzolotau PET were recruited in this study. (We calculated the PLFCS and standardized uptake value ratio (SUVR) of each node based on the Brainnetome atlas (BNA) template. The SUVR of 246 brain regions was calculated with the cerebellum as the reference region. Further functional connection strength (FCs), PLFCS and SUVR of each brain region were obtained in three groups for comparison.) For each patient, PLFCS and standardized uptake value ratio (SUVR) were calculated based on the Brainnetome atlas (BNA) template. These results, as well as functional connection strength (FCs), were then compared between different groups. Multiple permutation tests were used to determine the target nodes between NC and cognitive impairment (CI) groups (MCI and AD). The relationship between PLFCS and neuropsychological scores or cortical tau deposit was investigated via Pearson correlation analysis. RESULTS: Higher PLFCS and FCs in AD and MCI groups were found compared to the NC group. The PLFCS of 129 brain regions were found to be different between NC and CI groups, and 8 of them were correlated with tau SUVR, including superior parietal lobule (MCI: r = 0.4360, p = 0.0260, AD: r = -0.3663, p = 0.0280), middle frontal gyrus (AD: MFG_R_7_2: r = 0.4106, p = 0.0129; MFG_R_7_5: r = 0.4239, p = 0.0100), inferior frontal gyrus (AD: IFG_R_6_2: r = 0.3589, p = 0.0316), precentral gyrus (AD: PrG_R_6_6: r = 0.3493, p = 0.0368), insular gyrus (AD: INS_R_6_3: r = 0.3496, p = 0.0366) and lateral occipital cortex (AD: LOcC _L_4_3: r = -0.3433, p = 0.0404). Noteworthily, the opposing relationship was found in the superior parietal lobule in the MCI and AD groups. CONCLUSIONS: Brain functional connectivity abnormality is correlated with tau pathology in AD and MCI.

10.
Mov Disord ; 37(9): 1915-1923, 2022 09.
Article in English | MEDLINE | ID: mdl-35861378

ABSTRACT

BACKGROUND: Anecdotal evidence suggests that patients diagnosed with the parkinsonian subtype of multiple system atrophy (MSA-P) may show uptake of the second-generation tau positron emission tomography (PET) tracer 18 F-Florzolotau (previously known as 18 F-APN-1607) in the putamen. OBJECTIVES: This study systematically investigated the localization and magnitude of 18 F-Florzolotau uptake in a relatively large cohort of patients with MSA-P. METHODS: 18 F-Florzolotau PET imaging was performed in 31 patients with MSA-P, 24 patients with Parkinson's disease (PD), and 20 age-matched healthy controls. 18 F-Florzolotau signal in the striatum was analyzed by visual inspection and classified as either positive or negative. Regional 18 F-Florzolotau binding was also expressed as standardized uptake value ratio (SUVR) to assess whether it was associated with core symptoms of MSA-P after adjustment for potential confounders. RESULTS: By visual inspection and semiquantitative SUVR comparisons, patients with MSA-P showed elevated 18 F-Florzolotau uptake in the putamen, globus pallidus, and dentate-a finding that was not observed in PD. This increased signal was significantly associated with the core symptoms of MSA-P. In addition, patients with MSA-P with cerebellar ataxia showed an elevated 18 F-Florzolotau uptake in the cerebellar dentate. CONCLUSIONS: 18 F-Florzolotau tau PET imaging findings may reflect the clinical severity of MSA-P and can potentially discriminate between this condition and PD. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Fluorodeoxyglucose F18/metabolism , Humans , Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , Positron-Emission Tomography/methods , Putamen/metabolism , Tomography, X-Ray Computed
11.
Mov Disord ; 37(9): 1861-1871, 2022 09.
Article in English | MEDLINE | ID: mdl-35857319

ABSTRACT

BACKGROUND: Whether dementia with Lewy bodies (DLB) and Parkinson's disease (PD) dementia (PDD) represent the same disease, distinct entities, or conditions within the same spectrum remains controversial. OBJECTIVE: The objective of this study was to provide new insight into this debate by separately identifying disease-specific metabolic patterns and comparing them with each other and with previously established PD-related pattern (PDRP). METHODS: Patients with DLB (n = 67), patients with PDD (n = 50), and healthy control subjects (HCs; n = 15) with brain 18 F-fluorodeoxyglucose positron emission tomography were enrolled as cohorts A and B for pattern identification and validation, respectively. Patients with PD (n = 30) were included for discrimination. Twenty-one participants had two scans. The principal component analysis was applied for pattern identification (DLB-related pattern [DLBRP], PDD-related pattern [PDDRP]). Similarities and differences among three patterns were assessed by pattern topography, pattern expression, clinical correlations cross-sectionally, and pattern expression changes longitudinally. RESULTS: DLBRP and PDDRP shared highly similar topographies, with relative hypometabolism mainly in the middle temporal gyrus, middle occipital gyrus, lingual gyrus, precuneus, cuneus, angular gyrus, superior and inferior parietal gyrus, middle and inferior frontal gyrus, cingulate, and caudate, and relative hypermetabolism in the cerebellum, putamen, thalamus, precentral/postcentral gyrus, and paracentral lobule, which were more extensive than the PDRP. Patients with DLB and PDD could not be distinguished successfully by any pattern, but patients with PD were easily recognized, especially by DLBRP and PDDRP. The pattern expression of DLBRP and PDDRP showed similar efficacy in cross-sectional disease severity assessment and longitudinal progression monitoring. CONCLUSIONS: The consistent abnormalities in metabolic patterns of DLB and PDD might underline the potential continuum across the clinical spectrum from PD to DLB. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cross-Sectional Studies , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Positron-Emission Tomography/methods
12.
Eur J Nucl Med Mol Imaging ; 49(8): 2798-2811, 2022 07.
Article in English | MEDLINE | ID: mdl-35588012

ABSTRACT

PURPOSE: This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep learning for the differential diagnosis of parkinsonism. METHODS: This study involved 1017 subjects who underwent DAT PET imaging ([11C]CFT) including 43 healthy subjects and 974 parkinsonian patients with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA) or progressive supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quantitative analysis were compared with their conventional counterparts to further interpret the performance of deep learning. RESULTS: The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitivity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensitivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant differences among IPD, MSA and PSP. CONCLUSION: This study suggested the developed deep neural network can decode in-depth information from DAT and showed potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and quantitative analysis.


Subject(s)
Deep Learning , Multiple System Atrophy , Parkinson Disease , Parkinsonian Disorders , Brain/metabolism , Diagnosis, Differential , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Multiple System Atrophy/diagnosis , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Parkinson Disease/metabolism , Parkinsonian Disorders/diagnostic imaging , Positron-Emission Tomography/methods
13.
Mov Disord ; 37(3): 525-534, 2022 03.
Article in English | MEDLINE | ID: mdl-34842301

ABSTRACT

BACKGROUND: Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE: The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS: Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS: Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS: Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Cross-Sectional Studies , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Mutation/genetics , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , tau Proteins/genetics , tau Proteins/metabolism
14.
Behav Neurol ; 2021: 2230196, 2021.
Article in English | MEDLINE | ID: mdl-35003386

ABSTRACT

The Parkinson's Disease Progressive Neuroimaging Initiative (PDPNI) is a longitudinal observational clinical study. In PDPNI, the clinical and imaging data of patients diagnosed with Parkinsonian syndromes and Idiopathic rapid eye movement sleep behavior disorder (RBD) were longitudinally followed every two years, aiming to identify progression biomarkers of Parkinsonian syndromes through functional imaging modalities including FDG-PET, DAT-PET imaging, ASL MRI, and fMRI, as well as the treatment conditions, clinical symptoms, and clinical assessment results of patients. From February 2012 to March 2019, 224 subjects (including 48 healthy subjects and 176 patients with confirmed PDS) have been enrolled in PDPNI. The detailed clinical information and clinical assessment scores of all subjects were collected by neurologists from Huashan Hospital, Fudan University. All subjects enrolled in PDPNI were scanned with 18F-FDG PET, 11C-CFT PET, and MRI scan sequence. All data were collected in strict accordance with standardized data collection protocols.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Disease Progression , Humans , Magnetic Resonance Imaging , Neuroimaging , Parkinson Disease/diagnostic imaging , REM Sleep Behavior Disorder/diagnostic imaging
15.
Ann Nucl Med ; 34(9): 675-681, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32632564

ABSTRACT

OBJECTIVES: To investigate the feasibility of a noninvasive method for imaging translocator protein (18 kDa) (TSPO) in the retina of diabetic retinopathy (DR) rats using fluorine-18-DPA-714 ([18F]-DPA-714) micro-positron emission tomography (PET)/X-ray computed tomography (CT). METHODS: Sprague-Dawley (SD) rats were intraperitoneally injected with streptozocin (STZ) (65 mg kg-1, ip) to induce diabetes mellitus (DM). The TSPO in both eyes was detected by PET/CT using [18F]-DPA-714 12 weeks after the establishment of the DM model. The mean standardized uptake value (SUVmean) was analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR) were performed to detect the TSPO protein and mRNA levels in the retina. RESULTS: PET/CT results showed that the SUV of [18F]-DPA-714 was markedly reduced in the retina of DR rats compared with that of normal controls 12 weeks after diabetes induction. The SUVmean of regions of interest (ROIs) in the retinas of DR and normal control rats was 0.883 ± 0.078 and 2.525 ± 0.213 (P < 0.001), respectively. The results of PET/CT were in line with the Western blots and quantitative real-time PCR. CONCLUSIONS: The PET results demonstrated that TSPO was decreased in the early stage of DR. [18F]-DPA-714 PET/CT appears to be a useful noninvasive imaging method for detecting TSPO in the retina. A decrease in the TSPO level in the retina may play an important role in the development of DR.


Subject(s)
Carrier Proteins/metabolism , Diabetic Retinopathy/diagnostic imaging , Diabetic Retinopathy/metabolism , Fluorine Radioisotopes , Positron Emission Tomography Computed Tomography , Pyrazoles , Pyrimidines , Receptors, GABA-A/metabolism , Retina/diagnostic imaging , Retina/metabolism , Animals , Carrier Proteins/genetics , Gene Expression Regulation , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/genetics
16.
Mol Imaging Biol ; 20(5): 771-779, 2018 10.
Article in English | MEDLINE | ID: mdl-29520623

ABSTRACT

PURPOSE: To investigate the relationship between expression level of vesicular monoamine transporter 2 (VMAT2) and myopia, as well as the feasibility of noninvasive myopia diagnosis through imaging VMAT2 in retina by using [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ). PROCEDURES: The right eyes of ten guinea pigs were deprived of vision to establish form-deprived (FD) myopia and the left eyes were untreated as the self-control eyes. The location and expression level of VMAT2 in the eyes were detected by micro-positron emission tomography (PET)/X-ray computed tomography (CT) imaging through using [18F]FP-(+)-DTBZ. Immunofluorescence staining and Western blot were used to confirm the location and expression level of VMAT2 in the eyes. The concentrations of dopamine (DA) and its metabolites including 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were also investigated by high-performance liquid chromatography. RESULTS: The right eyes deprived of vision were obviously myopic (- 3.17 ± 1.33 D) after procedure, while the left eyes were hyperopic (4.60 ± 0.83 D, P < 0.0001). The main expressions of VMAT2 in the eyes were located in retina. VMAT2 was significantly reduced in the myopic retina compared to the normal one from PET/CT results (P = 0.0008), which could also be verified by Western blots (P = 0.029). The concentrations of DA, DOPAC, and HVA in the FD eyes were all significantly less than those in the control eyes (P = 0.024, P = 0.018, P = 0.008). As a role of storing and releasing DA in vesicles, VMAT2 was demonstrated positively correlating with the amounts of DA (P = 0.030), DOPAC (P = 0.038), and HVA (P = 0.025) through Pearson's correlation coefficient test. CONCLUSIONS: We demonstrate that [18F]FP-(+)-DTBZ can be used to noninvasively image VMAT2 in retina. The expression level of VMAT2 in retina may act as a new biomarker for myopia diagnosis. The decreasing of VMAT2 expression level may play an important role in the development of myopia through correspondingly reducing the amount of DA in retina.


Subject(s)
Myopia/diagnostic imaging , Myopia/metabolism , Retina/diagnostic imaging , Retina/metabolism , Tetrabenazine/analogs & derivatives , Vesicular Monoamine Transport Proteins/metabolism , 3,4-Dihydroxyphenylacetic Acid/chemistry , Animals , Dopamine/metabolism , Fluorine Radioisotopes/chemistry , Guinea Pigs , Homovanillic Acid/chemistry , Myopia/pathology , Positron Emission Tomography Computed Tomography , Refractive Errors/diagnostic imaging , Refractive Errors/metabolism , Refractive Errors/pathology , Retina/pathology , Tetrabenazine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...