Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Immun Ageing ; 20(1): 71, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042785

ABSTRACT

BACKGROUND: Memory CD8+ T cells expand with age. We previously demonstrated an age-associated expansion of effector memory (EM) CD8+ T cells expressing low levels of IL-7 receptor alpha (IL-7Rαlow) and the presence of its gene signature (i.e., IL-7Rαlow aging genes) in peripheral blood of older adults without Alzheimer's disease (AD). Considering age as the strongest risk factor for AD and the recent finding of EM CD8+ T cell expansion, mostly IL-7Rαlow cells, in AD, we investigated whether subjects with AD have alterations in IL-7Rαlow aging gene signature, especially in relation to genes possibly associated with AD and disease severity. RESULTS: We identified a set of 29 candidate genes (i.e., putative AD genes) which could be differentially expressed in peripheral blood of patients with AD through the systematic search of publicly available datasets. Of the 29 putative AD genes, 9 genes (31%) were IL-7Rαlow aging genes (P < 0.001), suggesting the possible implication of IL-7Rαlow aging genes in AD. These findings were validated by RT-qPCR analysis of 40 genes, including 29 putative AD genes, additional 9 top IL-7R⍺low aging but not the putative AD genes, and 2 inflammatory control genes in peripheral blood of cognitively normal persons (CN, 38 subjects) and patients with AD (40 mild cognitive impairment and 43 dementia subjects). The RT-qPCR results showed 8 differentially expressed genes between AD and CN groups; five (62.5%) of which were top IL-7Rαlow aging genes (FGFBP2, GZMH, NUAK1, PRSS23, TGFBR3) not previously reported to be altered in AD. Unbiased clustering analysis revealed 3 clusters of dementia patients with distinct expression levels of the 40 analyzed genes, including IL-7Rαlow aging genes, which were associated with neurocognitive function as determined by MoCA, CDRsob and neuropsychological testing. CONCLUSIONS: We report differential expression of "normal" aging genes associated with IL-7Rαlow EM CD8+ T cells in peripheral blood of patients with AD, and the significance of such gene expression in clustering subjects with dementia due to AD into groups with different levels of cognitive functioning. These results provide a platform for studies investigating the possible implications of age-related immune changes, including those associated with CD8+ T cells, in AD.

2.
Nat Commun ; 14(1): 6422, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828026

ABSTRACT

Tumors acquire alterations in oncogenes and tumor suppressor genes in an adaptive walk through the fitness landscape of tumorigenesis. However, the interactions between oncogenes and tumor suppressor genes that shape this landscape remain poorly resolved and cannot be revealed by human cancer genomics alone. Here, we use a multiplexed, autochthonous mouse platform to model and quantify the initiation and growth of more than one hundred genotypes of lung tumors across four oncogenic contexts: KRAS G12D, KRAS G12C, BRAF V600E, and EGFR L858R. We show that the fitness landscape is rugged-the effect of tumor suppressor inactivation often switches between beneficial and deleterious depending on the oncogenic context-and shows no evidence of diminishing-returns epistasis within variants of the same oncogene. These findings argue against a simple linear signaling relationship amongst these three oncogenes and imply a critical role for off-axis signaling in determining the fitness effects of inactivating tumor suppressors.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Humans , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Oncogenes/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Mutation
3.
Cancer Res ; 82(22): 4261-4273, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36112789

ABSTRACT

Mutationally activated BRAF is detected in approximately 7% of human lung adenocarcinomas, with BRAFT1799A serving as a predictive biomarker for treatment of patients with FDA-approved inhibitors of BRAFV600E oncoprotein signaling. In genetically engineered mouse (GEM) models, expression of BRAFV600E in the lung epithelium initiates growth of benign lung tumors that, without additional genetic alterations, rarely progress to malignant lung adenocarcinoma. To identify genes that cooperate with BRAFV600E for malignant progression, we used Sleeping Beauty-mediated transposon mutagenesis, which dramatically accelerated the emergence of lethal lung cancers. Among the genes identified was Rbms3, which encodes an RNA-binding protein previously implicated as a putative tumor suppressor. Silencing of RBMS3 via CRISPR/Cas9 gene editing promoted growth of BRAFV600E lung organoids and promoted development of malignant lung cancers with a distinct micropapillary architecture in BRAFV600E and EGFRL858R GEM models. BRAFV600E/RBMS3Null lung tumors displayed elevated expression of Ctnnb1, Ccnd1, Axin2, Lgr5, and c-Myc mRNAs, suggesting that RBMS3 silencing elevates signaling through the WNT/ß-catenin signaling axis. Although RBMS3 silencing rendered BRAFV600E-driven lung tumors resistant to the effects of dabrafenib plus trametinib, the tumors were sensitive to inhibition of porcupine, an acyltransferase of WNT ligands necessary for their secretion. Analysis of The Cancer Genome Atlas patient samples revealed that chromosome 3p24, which encompasses RBMS3, is frequently lost in non-small cell lung cancer and correlates with poor prognosis. Collectively, these data reveal the role of RBMS3 as a lung cancer suppressor and suggest that RBMS3 silencing may contribute to malignant NSCLC progression. SIGNIFICANCE: Loss of RBMS3 cooperates with BRAFV600E to induce lung tumorigenesis, providing a deeper understanding of the molecular mechanisms underlying mutant BRAF-driven lung cancer and potential strategies to more effectively target this disease.


Subject(s)
Adenocarcinoma of Lung , Carcinogenesis , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proto-Oncogene Proteins B-raf , RNA-Binding Proteins , Trans-Activators , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation , Lung/pathology , Lung Neoplasms/genetics , Mutagenesis , Proto-Oncogene Proteins B-raf/metabolism , RNA-Binding Proteins/genetics , Trans-Activators/metabolism , Wnt Signaling Pathway , Carcinogenesis/genetics
4.
Handb Clin Neurol ; 165: 59-70, 2019.
Article in English | MEDLINE | ID: mdl-31727230

ABSTRACT

Lewy body dementia (LBD) is an umbrella term for major neurocognitive disorders caused by Lewy body pathology. Parkinson's disease dementia (PDD) and Dementia with Lewy bodies (DLB) are the two main syndromes in LBD. LBDs typically present with cognitive impairment, cholinergic deficiency, neuropsychiatric symptoms such as visual hallucinations and paranoid delusions, as well as parkinsonian symptoms. Due to the urgency in diagnosing LBD early in the disease course to provide the most optimal management of these syndromes, it is important that clinicians elicit the most clinically significant symptoms during patient encounters. The focus of this chapter is to discuss current LBD classification systems and assessments, neuropathology of LBDs, behavioral symptomatology, contemporary management options, and possible future targets of treatment. PubMed was searched to obtain reviews and studies that pertain to classification, behavioral symptomatology, neurobiology, neuroimaging, and treatment of LBDs. Articles were chosen with a predilection to more recent clinical trials and systematic reviews or meta-analyses. Updates to diagnostic criteria have increased clinical diagnostic sensitivity and specificity. Current therapeutic modalities are limited as there is no current disease-modifying drug available. Cholinesterase inhibitors have been reported to be effective in decreasing neuropsychiatric and cognitive symptoms. Neuroleptics should be avoided unless clinically indicated. There is a paucity of studies investigating treatment options for mood symptoms. Current novel targets of treatment focus on decreasing α-synuclein burden. LBDs are a group of dementia syndromes that affect a significant portion of the elderly population. Early diagnosis and treatment is necessary to improve patient quality of life with current treatment options more focused on alleviating severe symptomatology rather than modifying disease pathology.


Subject(s)
Lewy Body Disease/diagnostic imaging , Lewy Body Disease/drug therapy , Mental Disorders/diagnostic imaging , Mental Disorders/drug therapy , Humans , Lewy Body Disease/psychology , Mental Disorders/psychology , Neuroimaging/trends , Psychopharmacology , alpha-Synuclein/antagonists & inhibitors
5.
Ther Adv Psychopharmacol ; 8(1): 33-48, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29344342

ABSTRACT

BACKGROUND: Frontotemporal dementia (FTD) describes a cluster of neurocognitive syndromes that present with impairment of executive functioning, changes in behavior, and a decrease in language proficiency. FTD is the second most common form of dementia in those younger than 65 years and is expected to increase in prevalence as the population ages. This goal in our review is to describe advances in the understanding of neurobiological pathology, classification, assessment, and treatment of FTD syndromes. METHODS: PubMed was searched to obtain reviews and studies that pertain to advancements in genetics, neurobiology, neuroimaging, classification, and treatment of FTD syndromes. Articles were chosen with a predilection to more recent preclinical/clinical trials and systematic reviews. RESULTS: Recent reviews and trials indicate a significant advancement in the understanding of molecular and neurobiological clinical correlates to variants of FTD. Genetic and histopathologic markers have only recently been discovered in the past decade. Current therapeutic modalities are limited, with most studies reporting improvement in symptoms with nonpharmacological interventions. However, a small number of studies have reported improvement of behavioral symptoms with selective serotonin reuptake inhibitor (SSRI) treatment. Stimulants may help with disinhibition, apathy, and risk-taking behavior. Memantine and cholinesterase inhibitors have not demonstrated efficacy in ameliorating FTD symptoms. Antipsychotics have been used to treat agitation and psychosis, but safety concerns and side effect profiles limit utilization in the general FTD population. Nevertheless, recent breakthroughs in the understanding of FTD pathology have led to developments in pharmacological interventions that focus on producing treatments with autoimmune, genetic, and molecular targets. CONCLUSION: FTD is an underdiagnosed group of neurological syndromes comprising multiple variants with distinct neurobiological profiles and presentations. Recent advances suggest there is an array of potential novel therapeutic targets, although data concerning their effectiveness are still preliminary or preclinical. Further studies are required to develop pharmacological interventions, as there are currently no US Food and Drug administration approved treatments to manage FTD syndromes.

6.
Pharmacol Ther ; 168: 29-42, 2016 12.
Article in English | MEDLINE | ID: mdl-27595930

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with a high mortality rate. Genetic and biochemical studies have shown that RAS signaling mediated by KRAS plays a pivotal role in disease initiation, progression and drug resistance. RAS signaling affects several cellular processes in PDAC, including cellular proliferation, migration, cellular metabolism and autophagy. 90% of pancreatic cancer patients harbor somatic oncogenic point mutations in KRAS, which lead to constitutive activation of the molecule. Pancreatic cancers lacking KRAS mutations show activation of RAS via upstream signaling through receptor mediated tyrosine kinases, like EGFR, and in a small fraction of patients, oncogenic activation of the downstream B-RAF molecule is detected. RAS-stimulated signaling of RAF/MEK/ERK, PI3K/AKT/mTOR and RalA/B is active in human pancreatic cancers, cancer cell lines and mouse models of PDAC, although activation levels of each signaling arm appear to be variable across different tumors and perhaps within different subclones of single tumors. Recently, several targeted therapies directed towards MEK, ERK, PI3K and mTOR have been assayed in pancreatic cancer cell lines and in mouse models of the disease with promising results for their ability to impede cellular growth or delay tumor formation, and several inhibitors are currently in clinical trials. However, therapy-induced cross activation of RAS effector molecules has elucidated the complexities of targeting RAS signaling. Combinatorial therapies are now being explored as an approach to overcome RAS-induced therapeutic resistance in pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Disease Models, Animal , Drug Resistance, Neoplasm , Humans , Mice , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Point Mutation , Signal Transduction
7.
Front Psychiatry ; 7: 72, 2016.
Article in English | MEDLINE | ID: mdl-27199779

ABSTRACT

Major depressive disorder (MDD) contributes to a significant worldwide disease burden, expected to be second only to heart disease by 2050. However, accurate diagnosis has been a historical weakness in clinical psychiatry. As a result, there is a demand for diagnostic modalities with greater objectivity that could improve on current psychiatric practice that relies mainly on self-reporting of symptoms and clinical interviews. Over the past two decades, literature on a growing number of putative biomarkers for MDD increasingly suggests that MDD patients have significantly different biological profiles compared to healthy controls. However, difficulty in elucidating their exact relationships within depression pathology renders individual markers inconsistent diagnostic tools. Consequently, further biomarker research could potentially improve our understanding of MDD pathophysiology as well as aid in interpreting response to treatment, narrow differential diagnoses, and help refine current MDD criteria. Representative of this, multiplex assays using multiple sources of biomarkers are reported to be more accurate options in comparison to individual markers that exhibit lower specificity and sensitivity, and are more prone to confounding factors. In the future, more sophisticated multiplex assays may hold promise for use in screening and diagnosing depression and determining clinical severity as an advance over relying solely on current subjective diagnostic criteria. A pervasive limitation in existing research is heterogeneity inherent in MDD studies, which impacts the validity of biomarker data. Additionally, small sample sizes of most studies limit statistical power. Yet, as the RDoC project evolves to decrease these limitations, and stronger studies with more generalizable data are developed, significant advances in the next decade are expected to yield important information in the development of MDD biomarkers for use in clinical settings.

8.
Cancer Res ; 75(15): 3167-80, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26001956

ABSTRACT

Lung carcinogenesis is a multistep process in which normal lung epithelial cells are converted to cancer cells through the sequential acquisition of multiple genetic or epigenetic events. Despite the utility of current genetically engineered mouse (GEM) models of lung cancer, most do not allow temporal dissociation of the cardinal events involved in lung tumor initiation and cancer progression. Here we describe a novel two-switch GEM model for BRAF(V600E)-induced lung carcinogenesis allowing temporal dissociation of these processes. In mice carrying a Flp recombinase-activated allele of Braf (Braf(FA)) in conjunction with Cre-regulated alleles of Trp53, Cdkn2a, or c-MYC, we demonstrate that secondary genetic events can promote bypass of the senescence-like proliferative arrest displayed by BRAF(V600E)-induced lung adenomas, leading to malignant progression. Moreover, restoring or activating TP53 in cultured BRAF(V600E)/TP53(Null) or BRAF(V600E)/INK4A-ARF(Null) lung cancer cells triggered a G1 cell-cycle arrest regardless of p19(ARF) status. Perhaps surprisingly, neither senescence nor apoptosis was observed upon TP53 restoration. Our results establish a central function for the TP53 pathway in restricting lung cancer development, highlighting the mechanisms that limit malignant progression of BRAF(V600E)-initiated tumors.


Subject(s)
Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Animals , Benzamides/pharmacology , Cell Cycle Checkpoints/genetics , Cell Proliferation , Cell Survival , Cyclin-Dependent Kinase Inhibitor p16/genetics , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Gene Silencing , Lung Neoplasms/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mice, Transgenic , Tumor Suppressor Protein p53/metabolism
9.
J Affect Disord ; 169: 15-20, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25128861

ABSTRACT

BACKGROUND: Determining etiological factors and reviewing advances in diagnostic modalities sensitive and specific to Major Depressive Disorder (MDD) is of importance in its evaluation and treatment. The inflammatory hypothesis is one of the most prevalent topics concerning MDD and may provide insight into the pathogenesis of depression, development of biomarkers, and ultimately production of more effective depression therapies. METHOD: We reviewed several studies to evaluate contemporary concepts concerning proinflammatory cytokines and their relationship to various depressive disorders, the use of anti-inflammatory therapies in MDD treatment, and the application of neuroimaging in conjunction with cytokine profiles from both plasma and CSF as possible diagnostic tools. RESULTS: Proinflammatory cytokines in both plasma and CSF have been found to influence the progression and severity of depressive disorders in different populations. Studies have shown elevated serum levels of IL-1, IL-6, TNF-α, CRP, and MCP-1 in depressed patients, but have presented mixed results with IL-8 serum levels, and with IL-6 and MCP-1 CSF levels. Anti-inflammatory treatment of MDD may have adjuvant properties with current depression medications. MRI and NIRS neuroimaging confirm neurological abnormalities in the presence of elevated proinflammatory cytokines in depressed or stressed patients. LIMITATIONS: Heterogeneity of MDD and limited CSF cytokine research complicate the study of MDD pathogenesis. CONCLUSION: There is significant evidence that inflammatory processes influence the development and progression of MDD. Future studies with larger arrays of cytokine profiles aided by neuroimaging may provide more sensitive and specific modes of diagnostics in determining MDD etiology and provide guidance in individual therapies.


Subject(s)
Cytokines/blood , Depressive Disorder, Major/blood , Adult , Anti-Inflammatory Agents/therapeutic use , Brain/physiopathology , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Disease Progression , Humans , Inflammation Mediators/blood , Neuroimaging
10.
Genes Dev ; 28(6): 561-75, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24589553

ABSTRACT

Oncogene-induced senescence (OIS) is proposed as a cellular defense mechanism that restrains malignant progression of oncogene-expressing, initiated tumor cells. Consistent with this, expression of BRAF(V600E) in the mouse lung epithelium elicits benign tumors that fail to progress to cancer due to an apparent senescence-like proliferative arrest. Here we demonstrate that nuclear ß-catenin → c-MYC signaling is essential for early stage proliferation of BRAF(V600E)-induced lung tumors and is inactivated in the subsequent senescence-like state. Furthermore, either ß-catenin silencing or pharmacological blockade of Porcupine, an acyl-transferase essential for WNT ligand secretion and activity, significantly inhibited BRAF(V600E)-initiated lung tumorigenesis. Conversely, sustained activity of ß-catenin or c-MYC significantly enhanced BRAF(V600E)-induced lung tumorigenesis and rescued the anti-tumor effects of Porcupine blockade. These data indicate that early stage BRAF(V600E)-induced lung tumors are WNT-dependent and suggest that inactivation of WNT → ß-catenin → c-MYC signaling is a trigger for the senescence-like proliferative arrest that constrains the expansion and malignant progression of BRAF(V600E)-initiated lung tumors. Moreover, these data further suggest that the trigger for OIS in initiated BRAF(V600E)-expressing lung tumor cells is not simply a surfeit of signals from oncogenic BRAF but an insufficiency of WNT → ß-catenin → c-MYC signaling. These data have implications for understanding how genetic abnormalities cooperate to initiate and promote lung carcinogenesis.


Subject(s)
Lung Neoplasms/physiopathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Proliferation , Gene Expression Regulation, Neoplastic , Gene Silencing , Lung Neoplasms/genetics , Mice
11.
Cancer Res ; 72(12): 3048-59, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22511580

ABSTRACT

Genetically engineered mouse (GEM) models of lung tumorigenesis allow careful evaluation of lung tumor initiation, progression, and response to therapy. Using GEM models of oncogene-induced lung cancer, we show the striking similarity of the earliest stages of tumorigenesis induced by KRAS(G12D) or BRAF(V600E). Cre-mediated expression of KRAS(G12D) or BRAF(V600E) in the lung epithelium of adult mice initially elicited benign lung tumors comprising cuboidal epithelial cells expressing markers of alveolar pneumocytes. Strikingly, in a head-to-head comparison, oncogenic BRAF(V600E) elicited many more such benign tumors and did so more rapidly than KRAS(G12D). However, despite differences in the efficiency of benign tumor induction, only mice with lung epithelium expression of KRAS(G12D) developed malignant non-small cell lung adenocarcinomas. Pharmacologic inhibition of mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK)1/2 combined with in vivo imaging showed that initiation and maintenance of both BRAF(V600E)- or KRAS(G12D)-induced lung tumors was dependent on MEK→ERK signaling. Although the tumors dramatically regressed in response to MEK1/2 inhibition, they regrew following cessation of drug treatment. Together, our findings show that RAF→MEK→ERK signaling is both necessary and sufficient for KRAS(G12D)-induced benign lung tumorigenesis in GEM models. The data also emphasize the ability of KRAS(G12D) to promote malignant lung cancer progression compared with oncogenic BRAF(V600E).


Subject(s)
Lung Neoplasms/pathology , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MAP Kinase Signaling System , Mice , Mice, Transgenic , Respiratory Mucosa/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...