Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732143

ABSTRACT

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Subject(s)
Disease Models, Animal , Extracorporeal Shockwave Therapy , Muscle Contraction , TRPV Cation Channels , Urinary Bladder , Animals , Female , Rats , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Extracorporeal Shockwave Therapy/methods , Urinary Bladder/physiopathology , Urinary Bladder/metabolism , Urinary Bladder, Overactive/therapy , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/physiopathology , Urinary Bladder, Overactive/etiology , Ovariectomy , Rats, Sprague-Dawley , Ovary/metabolism
2.
Int J Mol Sci ; 24(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37834333

ABSTRACT

Autophagy is a lysosomal degradation process known as autophagic flux, involving the engulfment of damaged proteins and organelles by double-membrane autophagosomes. It comprises microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy. Macroautophagy consists of three stages: induction, autophagosome formation, and autolysosome formation. Atg8-family proteins are valuable for tracking autophagic structures and have been widely utilized for monitoring autophagy. The conversion of LC3 to its lipidated form, LC3-II, served as an indicator of autophagy. Autophagy is implicated in human pathophysiology, such as neurodegeneration, cancer, and immune disorders. Moreover, autophagy impacts urological diseases, such as interstitial cystitis /bladder pain syndrome (IC/BPS), ketamine-induced ulcerative cystitis (KIC), chemotherapy-induced cystitis (CIC), radiation cystitis (RC), erectile dysfunction (ED), bladder outlet obstruction (BOO), prostate cancer, bladder cancer, renal cancer, testicular cancer, and penile cancer. Autophagy plays a dual role in the management of urologic diseases, and the identification of potential biomarkers associated with autophagy is a crucial step towards a deeper understanding of its role in these diseases. Methods for monitoring autophagy include TEM, Western blot, immunofluorescence, flow cytometry, and genetic tools. Autophagosome and autolysosome structures are discerned via TEM. Western blot, immunofluorescence, northern blot, and RT-PCR assess protein/mRNA levels. Luciferase assay tracks flux; GFP-LC3 transgenic mice aid study. Knockdown methods (miRNA and RNAi) offer insights. This article extensively examines autophagy's molecular mechanism, pharmacological regulation, and therapeutic application involvement in urological diseases.


Subject(s)
Cystitis , Testicular Neoplasms , Animals , Male , Mice , Humans , Testicular Neoplasms/metabolism , Autophagy/genetics , Autophagosomes/metabolism , Autophagy-Related Protein 8 Family/metabolism , Mice, Transgenic , Cystitis/metabolism , Microtubule-Associated Proteins/metabolism , Lysosomes/metabolism
3.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175945

ABSTRACT

Postmenopausal women who have ovary hormone deficiency (OHD) may experience urological dysfunctions, such as overactive bladder (OAB) symptoms. This study used a female Sprague Dawley rat model that underwent bilateral ovariectomy (OVX) to simulate post-menopause in humans. The rats were treated with platelet-rich plasma (PRP) or platelet-poor plasma (PPP) after 12 months of OVX to investigate the therapeutic effects of PRP on OHD-induced OAB. The OVX-treated rats exhibited a decrease in the expression of urothelial barrier-associated proteins, altered hyaluronic acid (hyaluronan; HA) production, and exacerbated bladder pathological damage and interstitial fibrosis through NFƘB/COX-2 signaling pathways, which may contribute to OAB. In contrast, PRP instillation for four weeks regulated the inflammatory fibrotic biosynthesis, promoted cell proliferation and matrix synthesis of stroma, enhanced mucosal regeneration, and improved urothelial mucosa to alleviate OHD-induced bladder hyperactivity. PRP could release growth factors to promote angiogenic potential for bladder repair through laminin/integrin-α6 and VEGF/VEGF receptor signaling pathways in the pathogenesis of OHD-induced OAB. Furthermore, PRP enhanced the expression of HA receptors and hyaluronan synthases (HAS), reduced hyaluronidases (HYALs), modulated the fibroblast-myofibroblast transition, and increased angiogenesis and matrix synthesis via the PI3K/AKT/m-TOR pathway, resulting in bladder remodeling and regeneration.


Subject(s)
Platelet-Rich Plasma , Urinary Bladder, Overactive , Humans , Rats , Female , Animals , Urinary Bladder, Overactive/therapy , Urinary Bladder, Overactive/drug therapy , Rats, Sprague-Dawley , Hyaluronic Acid/pharmacology , Phosphatidylinositol 3-Kinases , Platelet-Rich Plasma/metabolism
4.
Int J Mol Sci ; 23(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35628581

ABSTRACT

The present study attempted to elucidate whether intravesical instillation of platelet-rich plasma (PRP) could decrease bladder inflammation and ameliorate bladder hyperactivity in ketamine ulcerative cystitis (KIC) rat model. Female Sprague Dawley (S-D) rats were randomly divided into control group, ketamine-treated group, ketamine with PRP treated group, and ketamine with platelet-poor plasma (PPP) treated group. Cystometry and micturition frequency/volume studies were performed to investigate bladder function. The morphological change of bladder was investigated by Mason's trichrome staining. Western blotting analysis were carried out to examine the protein expressions of inflammation, urothelial differentiation, proliferation, urothelial barrier function, angiogenesis and neurogenesis related proteins. The results revealed that treatment with ketamine significantly deteriorated bladder capacity, decreased voiding function and enhanced bladder overactivity. These pathological damage and interstitial fibrosis may via NF-κB/COX-2 signaling pathways and muscarinic receptor overexpression. PRP treatment decreased inflammatory fibrotic biosynthesis, attenuated oxidative stress, promoted urothelial cell regeneration, and enhanced angiogenesis and neurogenesis, thereafter recovered bladder dysfunction and ameliorate the bladder hyperactivity in KIC rat model. These findings suggested that the PRP therapy may offer new treatment options for those clinical KIC patients.


Subject(s)
Cystitis , Ketamine , Platelet-Rich Plasma , Animals , Cystitis/chemically induced , Cystitis/therapy , Female , Humans , Ketamine/pharmacology , Platelet-Rich Plasma/metabolism , Psychomotor Agitation , Rats , Rats, Sprague-Dawley , Urinary Bladder/pathology
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502202

ABSTRACT

Postmenopausal women with ovary hormone deficiency (OHD) are subject to overactive bladder (OAB) symptoms. The present study attempted to elucidate whether low-intensity extracorporeal shock wave therapy (LiESWT) alters bladder angiogenesis, decreases inflammatory response, and ameliorates bladder hyperactivity to influence bladder function in OHD-induced OAB in human clinical trial and rat model. The ovariectomized (OVX) for 12 months Sprague-Dawley rat model mimicking the physiological condition of menopause was utilized to induce OAB and assess the potential therapeutic mechanism of LiESWT (0.12 mJ/mm2, 300 pulses, and 3 pulses/second). The randomized, single-blinded clinical trial was enrolled 58 participants to investigate the therapeutic efficacy of LiESWT (0.25 mJ/mm2, 3000 pulses, 3 pulses/second) on postmenopausal women with OAB. The results revealed that 8 weeks' LiESWT inhibited interstitial fibrosis, promoted cell proliferation, enhanced angiogenesis protein expression, and elevated the protein phosphorylation of ErK1/2, P38, and Akt, leading to decreased urinary frequency, nocturia, urgency, urgency incontinence, and post-voided residual urine volume, but increased voided urine volume and the maximal flow rate of postmenopausal participants. In conclusion, LiESWT attenuated inflammatory responses, increased angiogenesis, and promoted proliferation and differentiation, thereby improved OAB symptoms, thereafter promoting social activity and the quality of life of postmenopausal participants.


Subject(s)
Disease Models, Animal , Extracorporeal Shockwave Therapy/methods , Primary Ovarian Insufficiency/complications , Quality of Life , Regeneration , Urinary Bladder, Overactive/therapy , Urinary Bladder/cytology , Adult , Aged , Animals , Female , Follow-Up Studies , Humans , Middle Aged , Prognosis , Prospective Studies , Rats , Rats, Sprague-Dawley , Single-Blind Method , Urinary Bladder, Overactive/etiology , Urinary Bladder, Overactive/pathology
6.
Biology (Basel) ; 10(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070854

ABSTRACT

The present study attempts to elucidate whether autophagy alters bladder angiogenesis, decreases inflammatory response, and ameliorates bladder hyperactivity-thereby influencing bladder function in ketamine-induced cystitis (KIC). In our methodology, female Sprague-Dawley (S-D) rats were randomly divided into the control group, the ketamine group, the ketamine+rapamycin group, and the ketamine+wortmannin group. The bladder function, contractile activity of detrusor smooth muscle, distribution of autophagosome and autolysosome, total white blood cells (WBCs) and leukocyte differential counts, the expressions of autophagy-associated protein, angiogenesis markers, and signaling pathway molecules involved in KIC were tested, respectively. The data revealed that treatment with ketamine significantly results in bladder overactivity, enhanced interstitial fibrosis, impaired endothelium, induced eosinophil-mediated inflammation, swelling, and degraded mitochondria and organelles, inhibited angiogenesis, and elevated the phosphorylation of Akt. However, treatment with rapamycin caused an inhibitory effect on vascular formation, removed ketamine metabolites, decreased the eosinophil-mediated inflammation, and ameliorated bladder hyperactivity, leading to improve bladder function in KIC. Moreover, wortmannin treatment reduced basophil-mediated inflammatory response, improved bladder angiogenesis by increasing capillary density and VEGF expression, to reverse antiangiogenic effect to repair KIC. In conclusion, these findings suggested that autophagy could modulate inflammatory responses and angiogenesis, which improved bladder function in KIC.

7.
Diagnostics (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35054241

ABSTRACT

Interstitial cystitis/bladder pain syndrome (IC/BPS) is defined as a chronic bladder disorder with suprapubic pain (pelvic pain) and pressure and/or discomfort related to bladder filling accompanied by lower urinary tract symptoms, such as urinary frequency and urgency without urinary tract infection (UTI) lasting for at least 6 weeks. IC/BPS presents significant bladder pain and frequency urgency symptoms with unknown etiology, and it is without a widely accepted standard in diagnosis. Patients' pathological features through cystoscopy and histologic features of bladder biopsy determine the presence or absence of Hunner lesions. IC/PBS is categorized into Hunner (ulcerative) type IC/BPS (HIC/BPS) or non-Hunner (nonulcerative) type IC/BPS (NHIC/BPS). The pathophysiology of IC/BPS is composed of multiple possible factors, such as chronic inflammation, autoimmune disorders, neurogenic hyperactivity, urothelial defects, abnormal angiogenesis, oxidative stress, and exogenous urine substances, which play a crucial role in the pathophysiology of IC/BPS. Abnormal expressions of several urine and serum specimens, including growth factor, methylhistamine, glycoprotein, chemokine and cytokines, might be useful as biomarkers for IC/BPS diagnosis. Further studies to identify the key molecules in IC/BPS will help to improve the efficacy of treatment and identify biomarkers of the disease. In this review, we discuss the potential medical therapy and assessment of therapeutic outcome with urinary biomarkers for IC/BPS.

SELECTION OF CITATIONS
SEARCH DETAIL
...