Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.442
Filter
1.
Phytomedicine ; 123: 155237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056148

ABSTRACT

BACKGROUND: The prevention and treatment of ischaemic stroke is a worldwide challenge, and effective clinical treatment strategies are lacking. Studies have demonstrated the efficacy of Verbena officinalis in managing cerebrovascular disorders. However, the neuroprotective bioactive components and mechanisms remain unclear. PURPOSE: To investigate the pharmacological combinatorial components and mechanism underlying the anti-ischemic stroke effect of the ethanol extract of Verbena officinalis (VO Ex). STUDY DESIGN AND METHODS: The components of VO Ex were identified by HPLC. A middle cerebral artery occlusion (MCAO) induced brain injury model was used to assess the therapeutic effect of VO Ex. The activity of the chemical components of VO Ex was evaluated using a primary astrocyte injury model induced by oxygen-glucose deprivation/reperfusion (OGD/R). RNA sequencing was used to reveal the potential targets of VO Ex against cerebral ischemia-reperfusion injury (CIRI), and the results were verified by qRT-PCR and western blotting. The key components and target binding ability were predicted by molecular docking. Finally, the mechanism of combinatorial components was verified by experiments. RESULTS: The HPLC results indicated that the main ingredients of VO Ex were hastatoside, verbenalin, acteoside, luteolin, apigenin and hispidulin. In vivo experiments showed that VO Ex improved MCAO-induced acute cerebral ischemic injury. Transcriptomic data and biological experiments suggested that VO Ex exerted therapeutic effects through IL17A signalling pathways. The in vitro experiments indicated that verbenalin, acteoside, luteolin, apigenin and hispidulin exhibited neuroprotective activities. The novel formula of VALAH, derived from the aforementioned active ingredients, exhibited superior efficacy compared to each individual component. Molecular docking and mechanistic studies have confirmed that VALAH functions in the treatment of ischaemic stroke by suppressing the activation of the IL17A signalling pathway. CONCLUSION: This work is the first to reveal that VO Ex effectively inhibits the IL17A signaling pathway and mitigates neuroinflammation following ischemic stroke. Moreover, we identified the novel formula VALAH as the bioactive combinatorial components for VO Ex. Further research suggests that the activity of VALAH is associated with IL17A-mediated regulation of neuroinflammation. This finding provides new insights into the efficacious components and mechanisms of traditional Chinese medicine.


Subject(s)
Brain Ischemia , Glucosides , Iridoid Glycosides , Ischemic Stroke , Polyphenols , Reperfusion Injury , Stroke , Verbena , Humans , Infarction, Middle Cerebral Artery/drug therapy , Brain Ischemia/drug therapy , Stroke/drug therapy , Stroke/complications , Neuroinflammatory Diseases , Apigenin , Luteolin/therapeutic use , Molecular Docking Simulation , Ischemic Stroke/drug therapy , Reperfusion Injury/drug therapy , Interleukin-17
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003787

ABSTRACT

Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone microstructure degeneration and bone mass loss, which has a high prevalence and disability rate. Effective prevention and treatment of OP is a major difficulty in the medical community. The nature of OP is that multiple pathological factors lead to the imbalance of human bone homeostasis maintained by osteoblasts and osteoclasts. Ferroptosis is a non-apoptotic cell death pathway, and its fundamental cause is cell damage caused by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is involved in and affects the occurrence and development of OP, which leads to OP by mediating the imbalance of bone homeostasis. Ferroptosis is an adjustable form of programmed cell death. The intervention of ferroptosis can regulate the damage degree and death process of osteoblasts and osteoclasts, which is beneficial to maintain bone homeostasis, slow down the development process of OP, improve the clinical symptoms of patients, reduce the risk of disability, and improve their quality of life. However, there are few studies on ferroptosis in OP. Traditional Chinese medicine (TCM) is a medical treasure with unique characteristics and great application value in China. It has been widely used in China and has a long history. It has the multi-target and multi-pathway advantages in the treatment of OP, with high safety, few toxic and side effects, and low treatment cost, and has a significant effect in clinical application. The intervention of TCM in ferroptosis to regulate bone homeostasis may be a new direction for the prevention and treatment of OP in the future. This article summarized the regulatory mechanisms related to ferroptosis, discussed the role of ferroptosis in bone homeostasis, and reviewed the current status and progress of active ingredients in TCM compounds and monomers in the regulation of OP through ferroptosis, so as to provide a theoretical basis for the participation of TCM in the prevention and treatment of OP in the future.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003784

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common disease in clinical practice. It is associated with obvious exposure to toxic particles or gases and has become the leading cause of death and disability worldwide. The pathogenesis of COPD is complex, and the oxidative stress involved in COPD plays a crucial role in the pathological process of the disease. Patients with COPD usually have high levels of oxidative stress in the lungs, which will affect the whole body for a long time, causing a variety of complications and accelerating the development of the disease. On the one hand, oxidative stress can directly damage the airway and lung tissue. On the other hand, it also drives other pathological mechanisms to jointly promote the development of disease, such as participating in inflammatory reactions and protease/anti-protease imbalance, promoting mucus secretion, accelerating cellular senescence, causing autoimmunity, and involving in genetic regulatory pathways. At present, western medicine treatment is mostly based on conventional drug treatment, and antioxidant-targeted oxidative stress is adopted, but there are still some challenges in efficacy and safety. Traditional Chinese medicine has a long history of preventing and treating COPD. In particular, Chinese herbal medicine formulas have great potential to interfere with the oxidative stress of COPD. Whether it is the modified classical traditional Chinese medicine or the new formulation developed by modern doctors, the research results reflect the multi-target and multi-channel advantages of traditional Chinese medicine treatment, and their efficacy and safety are gradually verified. This paper reviewed the literature in recent years, starting with the basic and clinical research on the intervention of traditional Chinese herbal medicine formulas on oxidative stress of COPD, so as to provide further ideas for related research on the prevention and treatment of oxidative stress of COPD by traditional Chinese medicine.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003422

ABSTRACT

By combing the application and funding situation of general, young scholar and regional scholar programs from National Natural Science Foundation of China(NSFC) in field of integrated traditional Chinese and western medicine in 2023, this paper summarizes the distribution of supporting units, application and funding hotspots, and the problems of application and funding projects in this discipline, in order to provide a reference for applicants and supporting organizations to understand the hotspot dynamics and reporting requirements of the discipline. In 2023, the discipline of integrated traditional Chinese and western medicine received a total of 2 793 applications, and there were 1 254 applications for general programs, 1 278 applications for young scholar programs, and 261 applications for regional scholar programs. The amounts of project funding obtained by the three were 145, 164 and 35, respectively, and the funding rates were 11.56%, 12.83% and 13.41% in that order. From the situation of obtaining funding, the age distribution of the project leaders who obtained funding for the general, young scholar and regional scholar programs were mainly distributed in the age of 40-46, 30-34, 38-44 years, respectively. Within the supported programs, the Chinese medicine affiliations accounted for 55.52%. With respect to research subjects, the proportion of one single Chinese herbs, or monomers, or extracts accounted for 29.4%, but the proportion of Chinese herb pairs or prescriptions accounted for 47.1%. Research hotspots included ferroptosis, bile acid metabolism, macrophages, mitochondria, microglia, exosomes, intestinal flora, microecology and so on. The current research mainly focused on the common key problems of the advantageous diseases of Chinese and western integrative medicine, but still need to be improved in the basic theories of Chinese and western medicine and multidisciplinary cross-disciplinary research.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003411

ABSTRACT

ObjectiveTo explore the mechanism of Bushen Huoxue enema in treating the rat model of kidney deficiency and blood stasis-thin endometrium (KDBS-TE) by transcriptome sequencing. MethodThe rat model of KDBS-TE was established by administration of tripterygium polyglycosides tablets combined with subcutaneous injection of adrenaline. The pathological changes of rat endometrium in each group were then observed. Three uterine tissue specimens from each of the blank group, model group, and Bushen Huoxue enema group were randomly selected for transcriptome sequencing. The differentially expressed circRNAs, lncRNAs, and miRNAs were screened, and the disease-related specific competitive endogenous RNA (ceRNA) regulatory network was constructed. Furthermore, the gene ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed for the mRNAs in the network. ResultCompared with the blank group, the model group showed endometrial dysplasia, decreased endometrial thickness and endometrial/total uterine wall thickness ratio (P<0.01), and differential expression of 18 circRNAs, 410 lncRNAs, and 7 miRNAs. Compared with the model group, the enema and estradiol valerate groups showed improved endometrial morphology and increased endometrial thickness and ratio of endometrial to total uterine wall thickness (P<0.05). In addition, 21 circRNAs, 518 lncRNAs, and 17 miRNAs were differentially expressed in the enema group. The disease-related specific circRNA-miRNA-mRNA regulatory network composed of 629 nodes and 664 edges contained 2 circRNAs, 34 miRNAs, and 593 mRNAs. The lncRNA-miRNA-mRNA regulatory network composed of 180 nodes and 212 edges contained 5 lncRNAs, 10 miRNAs, and 164 mRNAs. The mNRAs were mainly enriched in Hippo signaling pathway, autophagy-animal, axon guidance, etc. ConclusionBushen Huoxue enema can treat KDBS-TE in rats by regulating specific circRNAs, lncRNAs, and miRNAs in the uterus and the ceRNA network.

6.
Neuropsychiatr Dis Treat ; 19: 2469-2483, 2023.
Article in English | MEDLINE | ID: mdl-38029049

ABSTRACT

Depression, as a common mental illness that is often accompanied by suicidal and homicidal behaviors, is one of the most important diseases in the medical field that requires urgent attention. The pathogenesis of depression is complex, and the current therapeutic drugs such as tricyclic antidepressants (TCAs), monoamine oxidase inhibitors, and secondary serotonin reuptake inhibitors have certain shortcomings. The inflammatory factor hypothesis, one of the pathogenesis of depression, suggests that inflammatory response is a key factor leading to the occurrence and development of depression, and that overactivation of inflammatory factors such as NLRP3, Toll-like receptor 4, and IDO leads to immune-system dysfunction and depression. The other pathogenic hypothesis, the gut flora hypothesis, has also been the focus of recent research. The gut flora may work together with inflammatory factors to cause depression. The approach to treating depression has been by altering the gut flora through drugs or probiotics. However, effective and clear treatment methods are lacking. In this study, by exploring the involvement of intestinal flora and inflammatory factors in the pathogenesis of depression, we found that improving the intestinal flora can affect inflammatory factors and, therefore, provide research ideas for the development of novel drugs to treat depression.

7.
Sci Rep ; 13(1): 18366, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884641

ABSTRACT

In this experiment, a fixed bed of pyrolysis was used to conduct pyrolysis with coal and a mixture of coal and catalyst, and the distribution and composition of tar products were studied. The pyrolysis of raw coal was carried out at different temperatures and at different constant temperature times, and the effects of pyrolysis temperature and constant temperature pyrolysis time on tar product formation from raw coal pyrolysis were studied. γ-Al2O3 was used as the carrier, and 4 kinds of alkaline earth metal oxides (MgO, CaO, SrO, BaO), 3 kinds of subgroup metal oxides (Fe2O3, Co2O3, NiO) and 5 kinds of VIII metal oxides (Cr2O3, MnO2, CuO, ZnO, MnO2) were selected as active components. The supported γ-Al2O3 catalyst was prepared by the method of equal volume impregnation and roasting in a muffle furnace. The γ-Al2O3 catalyst was characterized by means of XPS, BET and SEM, and the mechanism of the mixed pyrolysis of coal with different metal oxide supported catalysts to generate tar was studied. The results showed that: (1) under the conditions of 450 °C, 500 °C, 550 °C and 600 °C, the maximum tar yield was 0.32 g at 600 °C, and the tar yield was higher at constant temperature for 15 min than at final temperature of 600 °C, with an increase of 15.63%. (2) Fe2O3/γ-Al2O3 catalyst resulted in the highest tar yield of 0.75 g, which was 134.38% higher than that of coal pyrolysis. (3) From the increase of light oil and phenol oil and the decrease of anthracene oil and asphalt, Co2O3/γ-Al2O3, Fe2O3/γ-Al2O3 and Cr2O3/γ-Al2O3 can improve the tar quality better.

8.
Signal Transduct Target Ther ; 8(1): 344, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37696816

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) play a pivotal role in maintaining liver homeostasis and influencing the pathological processes of various liver diseases. However, neither LSEC-specific hallmark genes nor a LSEC promoter-driven Cre mouse line has been introduced before, which largely restricts the study of liver diseases with vascular disorders. To explore LSEC-specific hallmark genes, we compared the top 50 marker genes between liver endothelial cells (ECs) and liver capillary ECs and identified 18 overlapping genes. After excluding globally expressed genes and those with low expression percentages, we narrowed our focus to two final candidates: Oit3 and Dnase1l3. Through single-cell RNA sequencing (scRNA-seq) and analysis of the NCBI database, we confirmed the extrahepatic expression of Dnase1l3. The paired-cell sequencing data further demonstrated that Oit3 was predominantly expressed in the midlobular liver ECs. Subsequently, we constructed inducible Oit3-CreERT2 transgenic mice, which were further crossed with ROSA26-tdTomato mice. Microscopy validated that the established Oit3-CreERT2-tdTomato mice exhibited significant fluorescence in the liver rather than in other organs. The staining analysis confirmed the colocalization of tdTomato and EC markers. Ex-vivo experiments further confirmed that isolated tdTomato+ cells exhibited well-differentiated fenestrae and highly expressed EC markers, confirming their identity as LSECs. Overall, Oit3 is a promising hallmark gene for tracing LSECs. The establishment of Oit3-CreERT2-tdTomato mice provides a valuable model for studying the complexities of LSECs in liver diseases.


Subject(s)
Endothelial Cells , Liver , Animals , Mice , Hepatocytes , Databases, Factual , Homeostasis , Mice, Transgenic , Endodeoxyribonucleases
9.
World J Gastroenterol ; 29(32): 4860-4872, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37701137

ABSTRACT

BACKGROUND: Resistance to antibiotics is one the main factors constraining the treatment and control of Helicobacter pylori (H. pylori) infections. Therefore, there is an urgent need to develop new antimicrobial agents to replace antibiotics. Our previous study found that linolenic acid-metronidazole (Lla-Met) has a good antibacterial effect against H. pylori, both antibiotic-resistant and sensitive H. pylori. Also, H. pylori does not develop resistance to Lla-Met. Therefore, it could be used for preparing broad-spectrum antibacterial agents. However, since the antibacterial mechanism of Lla-Met is not well understood, we explored this phenomenon in the present study. AIM: To understand the antimicrobial effect of Lla-Met and how this could be applied in treating corresponding infections. METHODS: H. pylori cells were treated with the Lla-Met compound, and the effect of the compound on the cell morphology, cell membrane permeability, and oxidation of the bacteria cell was assessed. Meanwhile, the differently expressed genes in H. pylori in response to Lla-Met treatment were identified. RESULTS: Lla-Met treatment induced several changes in H. pylori cells, including roughening and swelling. In vivo experiments revealed that Lla-Met induced oxidation, DNA fragmentation, and phosphatidylserine ectropionation in H. pylori cells. Inhibiting Lla-Met with L-cysteine abrogated the above phenomena. Transcriptome analysis revealed that Lla-Met treatment up-regulated the expression of superoxide dismutase SodB and MdaB genes, both anti-oxidation-related genes. CONCLUSION: Lla-Met kills H. pylori mainly by inducing oxidative stress, DNA damage, phosphatidylserine ectropionation, and changes on cell morphology.


Subject(s)
Helicobacter pylori , Metronidazole , Humans , alpha-Linolenic Acid/pharmacology , Phosphatidylserines , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
10.
MedComm (2020) ; 4(5): e346, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37614965

ABSTRACT

Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.

11.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37607001

ABSTRACT

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Endothelial Cells/metabolism , Transcription, Genetic , RNA Polymerase I/genetics , Neoplasms/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics
12.
Eur J Med Res ; 28(1): 272, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550781

ABSTRACT

AIM: To evaluate the efficacy and safety of vonoprazan-amoxicillin (VA) dual therapy for radically eradicating Helicobacter pylori (H. pylori). METHODS: The PubMed, Cochrane Library, Embase, China National Knowledge  Infrastructure (CNKI) and Wanfang databases were searched up to July 7, 2022, to identify clinical trials comparing the efficacy of VA dual therapy and triple therapy for H. pylori eradication. After evaluating the quality of the included studies, random effects models were conducted, and risk ratios (RRs) with 95% confidence intervals (CIs) were calculated to estimate the efficacy and safety of each approach. RESULTS: Six publications (including four randomized controlled trials) involving 2019 patients were included in this meta-analysis. Overall, the eradication rate for VA dual therapy was 89.9%, while it was 85.2% for triple therapy based on other acid inhibitors. The eradication rate of H. pylori in the VA dual regimen group was higher than that in the PPI-based (omeprazole or lansoprazole) triple therapy group (RR = 1.15, 95% CI 1.07-1.23, p < 0.0001). However, the efficacy of VA dual therapy was comparable with VA-Clarithromycin (VAC) triple therapy (RR = 0.97, 95% CI 0.93-1.02). Besides, the incidence of adverse reactions in VA dual therapy was also lower than that in triple therapy (RR = 0.80, 95% CI 0.70-0.91, p = 0.0009). CONCLUSION: Compared with PPI-based triple therapy, VA dual therapy showed a better therapeutic effect, safety and patient compliance rate for eradicating H. pylori, which should be used as a novel curative strategy in the future.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Anti-Bacterial Agents/adverse effects , Helicobacter Infections/drug therapy , Helicobacter Infections/chemically induced , Proton Pump Inhibitors/adverse effects , Drug Therapy, Combination , Treatment Outcome , Randomized Controlled Trials as Topic
13.
Microb Pathog ; 182: 106254, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481007

ABSTRACT

H9N2 IAV infection contributed to P. aeruginosa coinfection, causing severe hemorrhagic pneumonia in mink. In this study, the in vitro alveolar macrophage models were developed to investigate the innate immune responses to P. aeruginosa LPS stimulation following H9N2 IAV infection, using MH-S cells. The cytokine levels, apoptosis levels and the viral nucleic acid levels were detected and analyzed. As a result, the levels of IFN-α, IL-1ß, TNF-α, and IL-10 in MH-S cells with P. aeruginosa LPS stimulation following H9N2 IAV infection were significantly higher than those in MH-S cells with single H9N2 IAV infection and single LPS stimulation (P < 0.05), exacerbating inflammatory responses. LPS stimulation aggravated the apoptosis of MH-S cells with H9N2 IAV infection. Interestingly, LPS stimulation influences H9N2 IAV replication and indirectly reduced H9N2 IAV replications in in vitro AMs. It implied that LPS should play an important role in the pathogenesis of H9N2 IAV and P. aeruginosa coinfection.

14.
Food Sci Nutr ; 11(6): 3450-3463, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324905

ABSTRACT

High body mass index (high BMI, obesity) is a serious public health problem, and "obesity-induced oxidative stress, inflammation, and cancer" have become modern epidemic diseases. We carried out this study to explore a functional beverage that may protect against obesity-induced diseases. The Engleromyces goetzei Henn herbal tea is such a candidate. For this study, we carried out LC-MS analysis of E. goetzei Henn aqueous extract (EgH-AE); then used the Caco-2 cell line for the model cells and treated the cells with t-BHP to form an oxidative stress system. An MTT assay was used for testing the biocompatibility and cytoprotective effects; reactive oxygen species and malondialdehyde determination was used for evaluating the antioxidative stress effect; TNF-α and IL-1ß were used for observing the anti-inflammatory effect, and 8-OHdG for monitoring anticancer activity. The results of this study demonstrate that the EgH-AE has very good biocompatibility with the Caco-2 cell line and has good cytoprotective, antioxidant, anti-inflammatory, and anticancer properties. It is clear that EgH-AE, a kind of ancient herbal tea, may be used to develop a functional beverage that can be given to people with a high BMI to protect against obesity-induced diseases.

15.
Int J Biol Sci ; 19(6): 1941-1954, 2023.
Article in English | MEDLINE | ID: mdl-37063432

ABSTRACT

Rationale: Macrophages play a central role in the development and progression of nonalcoholic fatty liver disease (NAFLD). Studies have shown that Notch signaling mediated by transcription factor recombination signal binding protein for immunoglobulin kappa J region (RBP-J), is implicated in macrophage activation and plasticity. Naturally, we asked whether Notch signaling in macrophages plays a role in NAFLD, whether regulating Notch signaling in macrophages could serve as a therapeutic strategy to treat NAFLD. Methods: Immunofluorescence staining was used to detect the changes of macrophage Notch signaling in the livers of human patients with NAFLD and choline deficient amino acid-defined (CDAA) diet-fed mice. Lyz2-Cre RBP-Jflox or wild-type C57BL/6 male mice were fed with CDAA or high fat diet (HFD) to induce experimental steatohepatitis or steatosis, respectively. Liver histology examinations were performed using hematoxylin-eosin (H&E), Oil Red O staining, Sirius red staining and immunohistochemistry staining for F4/80, Col1α1 and αSMA. The expression of inflammatory factors, fibrosis or lipid metabolism associated genes were evaluated by quantitative reverse transcription (qRT)-PCR, Western blot or enzyme-linked immunosorbent assay (ELISA). The mRNA expression of liver samples was profiled by using RNA-seq. A hairpin-type decoy oligodeoxynucleotides (ODNs) for transcription factor RBP-J was loaded into bEnd.3-derived exosomes by electroporating. Mice with experimental NAFLD were treated with exosomes loading RBP-J decoy ODNs via tail vein injection. In vivo distribution of exosomes was analyzed by fluorescence labeling and imaging. Results: The results showed that Notch signaling was activated in hepatic macrophages in human with NAFLD or in CDAA-fed mice. Myeloid-specific RBP-J deficiency decreased the expression of inflammatory factors interleukin-1 beta (IL1ß) and tumor necrosis factor alpha (TNFα), attenuated experimental steatohepatitis in mice. Furthermore, we found that Notch blockade attenuated lipid accumulation in hepatocytes by inhibiting the expression of IL1ß and TNFα in macrophages in vitro. Meanwhile, we observed that tail vein-injected exosomes were mainly taken up by hepatic macrophages in mice with steatohepatitis. RBP-J decoy ODNs delivered by exosomes could efficiently inhibit Notch signaling in hepatic macrophages in vivo and ameliorate steatohepatitis or steatosis in CDAA or HFD mice, respectively. Conclusions: Combined, macrophage RBP-J promotes the progression of NAFLD at least partially through regulating the expression of pro-inflammatory cytokines IL1ß and TNFα. Infusion of exosomes loaded with RBP-J decoy ODNs might be a promising therapy to treat NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Transcription Factors/metabolism
16.
Environ Res ; 227: 115804, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37003556

ABSTRACT

The uncontrolled release of landfill gas represents a significant hazard to both human health and ecological well-being. However, the synergistic interactions of vegetation and microorganisms can effectively mitigate this threat by removing pollutants. This study provides a comprehensive review of the current status of controlling landfill gas pollution through the process of revegetation in landfill cover. Our survey has identified several common indicator plants such as Setaria faberi, Sarcandra glabra, and Fraxinus chinensis that grow in covered landfill soil. Local herbaceous plants possess stronger tolerance, making them ideal for the establishment of closed landfills. Moreover, numerous studies have demonstrated that cover plants significantly promote methane oxidation, with an average oxidation capacity twice that of bare soil. Furthermore, we have conducted an analysis of the interrelationships among vegetation, landfill gas, landfill cover soil, and microorganisms, thereby providing a detailed understanding of the potential for vegetation restoration in landfill cover. Additionally, we have summarized studies on the rhizosphere effect and have deduced the mechanisms through which plants biodegrade methane and typical non-methane pollutants. Finally, we have suggested future research directions to better control landfill gas using vegetation and microorganisms.


Subject(s)
Air Pollutants , Environmental Pollutants , Refuse Disposal , Humans , Waste Disposal Facilities , Biodegradation, Environmental , Methane/analysis , Oxidation-Reduction , Soil , Plants , Air Pollutants/analysis
17.
Nat Aging ; 3(3): 258-274, 2023 03.
Article in English | MEDLINE | ID: mdl-37118422

ABSTRACT

Aging leads to systemic metabolic disorders, including steatosis. Here we show that liver sinusoidal endothelial cell (LSEC) senescence accelerates liver sinusoid capillarization and promotes steatosis by reprogramming liver endothelial zonation and inactivating pericentral endothelium-derived C-kit, which is a type III receptor tyrosine kinase. Specifically, inhibition of endothelial C-kit triggers cellular senescence, perturbing LSEC homeostasis in male mice. During diet-induced nonalcoholic steatohepatitis (NASH) development, Kit deletion worsens hepatic steatosis and exacerbates NASH-associated fibrosis and inflammation. Mechanistically, C-kit transcriptionally inhibits chemokine (C-X-C motif) receptor (CXCR)4 via CCAAT enhancer-binding protein α (CEBPA). Blocking CXCR4 signaling abolishes LSEC-macrophage-neutrophil cross-talk and leads to the recovery of C-kit-deficient mice with NASH. Of therapeutic relevance, infusing C-kit-expressing LSECs into aged mice or mice with diet-induced NASH counteracts age-associated senescence and steatosis and improves the symptoms of diet-induced NASH by restoring metabolic homeostasis of the pericentral liver endothelium. Our work provides an alternative approach that could be useful for treating aging- and diet-induced NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Liver Cirrhosis/metabolism , Inflammation , Endothelium/metabolism
18.
J Formos Med Assoc ; 122(9): 911-921, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36878767

ABSTRACT

BACKGROUND AND PURPOSE: Emerging researches have regarded serum chloride as a capable predictor of mortality in liver cirrhosis. We aim to investigate the clinical role of admission chloride in cirrhotic patients with esophagogastric varices receiving transjugular intrahepatic portosystemic shunt (TIPS), which is unclear. METHODS: We retrospectively analyzed data of cirrhotic patients with esophagogastric varices undergoing TIPS in Zhongnan Hospital of Wuhan University. Mortality outcome was obtained by following up for 1-year after TIPS. Univariate and multivariate Cox regression were used to identify independent predictors of 1-year mortality post-TIPS. The receiver operating characteristic (ROC) curves were adopted to assess the predictive ability of the predictors. In addition, log-rank test and Kaplan-Meier (KM) analyses were employed to evaluate the prognostic value of predictors in the survival probability. RESULTS: A total of 182 patients were included ultimately. Age, fever symptom, platelet-to lymphocyte-ratio (PLR), lymphocyte-to-monocyte ratio (LMR), total bilirubin, serum sodium, chloride, and Child-Pugh score were related to 1-year follow-up mortality. In multivariate Cox regression analysis, serum chloride (HR = 0.823, 95%CI = 0.757-0.894, p < 0.001) and Child-Pugh score (HR = 1.401, 95%CI = 1.151-1.704, p = 0.001) were identified as independent predictors of 1-year mortality. Patients with serum chloride <107.35 mmol/L showed worse survival probability than those with serum chloride ≥107.35 mmol/L no matter with or without ascites (p < 0.05). CONCLUSION: Admission hypochloremia and increasing Child-Pugh score are independent predictors of 1-year mortality in cirrhotic patients with esophagogastric varices receiving TIPS.


Subject(s)
Esophageal and Gastric Varices , Portasystemic Shunt, Transjugular Intrahepatic , Varicose Veins , Humans , Chlorides , Retrospective Studies , Prognosis , Liver Cirrhosis/complications , Treatment Outcome
19.
Yi Chuan ; 45(2): 156-164, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36927662

ABSTRACT

DELLA gene family is involved in the regulation of signal transduction of plant hormones. mRNAs of GA insensitive (GAI), the member of DELLA gene family, are also signaling molecules of long-distance transport in plants. Genome-wide identification and mRNA transport analysis of the members of DELLA gene family in head cabbage (Brassica oleracea var. capitata) can provide basic data for their application in head cabbage. In this study, five members of DELLA gene family (BoRGA1, BoRGA2, BoRGL1, BoRGL2, and BoRGL3) were identified in head cabbage using genome and transcriptome data. However, head cabbage lacked a GAI gene in its genome. The scion (head cabbage, inbred line G27) and the rootstock Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) (sijiucaixin) were cleft-grafted together to produce the heterograft. Inflorescence stem of the rootstock and the corresponding inflorescence stem in Chinese flowering cabbage seedlings (as controls) were purified and analyzed with transcriptome sequencing. The total of 8, 9, 3, 5, and 1 exogenous read(s), derived respectively from BoRGA1, BoRGA2, BoRGL1, BoRGL2, and BoRGL3, were identified in the transcriptomes of the rootstocks. Nevertheless, mRNA transport of DELLA family genes from scion to rootstock did not increase the transcriptional level of the members of DELLA gene family in the rootstocks. Correlation analysis suggested that mRNA transport efficiency of the DELLA family genes was correlated with the sequence and the transcriptional level of the respective DELLA gene in the scion (head cabbage). This study lays the foundation for further investigation on the molecular mechanism of mRNA transport of the members of DELLA gene family in head cabbage.


Subject(s)
Brassica , Brassica/genetics , Heterografts , Transcriptome , Plant Growth Regulators , RNA, Messenger/genetics , Gene Expression Regulation, Plant
20.
Infect Drug Resist ; 16: 65-76, 2023.
Article in English | MEDLINE | ID: mdl-36636376

ABSTRACT

Background: Carbapenem resistant Klebsiella pneumoniae (CRKP) is an independent risk factor for nosocomial infection which poses a serious threat to human health. How to prevent and suppress CRKP infection and explore its drug resistance mechanisms have become a huge challenge and possesses immediate significance. Methods: A total of 45 CRKP strains isolated from hospitalized patients in Zhongnan Hospital of Wuhan University were collected from August 2018-December 2020. The strain's identification and antimicrobial susceptibility tests were performed using the VITEK 2 automated identification instrument. Single molecule DNA sequencing of 45 CRKP isolates was performed by the third generation high-throughput sequencing technology. Results: The results were analyzed by multi locus sequence typing (MLST) and phylogenetic analysis. Antimicrobial susceptibility showed that 45 CRKP isolates were multi-drug resistant strains, and the resistance rates to common antibiotics were as high as 68%. Whole genome sequencing results showed that the CRKP strains carried multiple drug resistance genes and virulence factors. MLST analysis found two different sequence types (ST), of which 44 were ST11 and 1 was ST1049. Conclusion: Through whole genome sequencing (WGS), we found multiple drug-resistant genes and virulence factors, and there was obvious dominant microbiota. The source was mainly related to nosocomial infection. The ST11-KPC Klebsiella pneumoniae was the main type, which was consistent with the most common type in China. We identified several dominant microbiotas which may serve as a target in the clinical prevention and treatment of severe bacterial infections. Our finding may have a role for guiding clinical antibiotic choosing.

SELECTION OF CITATIONS
SEARCH DETAIL
...