Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33685902

ABSTRACT

NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502.

2.
Microb Genom ; 7(9)2021 09.
Article in English | MEDLINE | ID: mdl-34473016

ABSTRACT

The biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analysed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital 5 years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.


Subject(s)
Hospitals , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Bayes Theorem , DNA, Bacterial , Disease Outbreaks , Drug Resistance, Multiple, Bacterial/genetics , Genomic Islands , Humans , Phenotype , Pseudomonas aeruginosa/classification , Sequence Analysis, DNA
3.
Front Bioeng Biotechnol ; 9: 640450, 2021.
Article in English | MEDLINE | ID: mdl-33777913

ABSTRACT

Pseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections, which is largely used as a model organism to study antibiotic resistance and pathogenesis. As other species of the genus, its wide metabolic versatility appears to be attractive to study biotechnological applications. However, its natural resistance to antibiotics and its capacity to produce a wide range of virulence factors argue against its biotechnological potential. By reducing the genome of the reference strain PAO1, we explored the development of four hypovirulent and hypersusceptible recombinant DNA hosts (rDNA hosts). Despite deleting up to 0.8% of the core genome, any of the developed strains presented alterations of fitness when cultured under standard laboratory conditions. Other features such as antibiotic susceptibility, cytotoxicity, in vivo pathogenesis, and expression of heterologous peptides were also explored to highlight the potential applications of these models. This work stands as the first stage of the development of a safe-platform strain of Pseudomonas aeruginosa that will be further optimized for biotechnological applications.

4.
Article in English | MEDLINE | ID: mdl-29530852

ABSTRACT

When overproduced, the multidrug efflux system MexEF-OprN increases the resistance of Pseudomonas aeruginosa to fluoroquinolones, chloramphenicol, and trimethoprim. In this work, we demonstrate that gain-of-function mutations in the regulatory gene mexT result in oligomerization of the LysR regulator MexT, constitutive upregulation of the efflux pump, and increased resistance in clinical isolates.


Subject(s)
Pseudomonas aeruginosa/drug effects , Amino Acid Substitution/genetics , Amino Acid Substitution/physiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial/genetics , Microbial Sensitivity Tests , Mutation/genetics , Pseudomonas aeruginosa/genetics
5.
Article in English | MEDLINE | ID: mdl-28507116

ABSTRACT

The multidrug efflux system MexEF-OprN is produced at low levels in wild-type strains of Pseudomonas aeruginosa However, in so-called nfxC mutants, mutational alteration of the gene mexS results in constitutive overexpression of the pump, along with increased resistance of the bacterium to chloramphenicol, fluoroquinolones, and trimethoprim. In this study, analysis of in vitro-selected chloramphenicol-resistant clones of strain PA14 led to the identification of a new class of MexEF-OprN-overproducing mutants (called nfxC2) exhibiting alterations in an as-yet-uncharacterized gene, PA14_38040 (homolog of PA2047 in strain PAO1). This gene is predicted to encode an AraC-like transcriptional regulator and was called cmrA (for chloramphenicol resistance activator). In nfxC2 mutants, the mutated CmrA increases its proper gene expression and upregulates the operon mexEF-oprN through MexS and MexT, resulting in a multidrug resistance phenotype without significant loss in bacterial virulence. Transcriptomic experiments demonstrated that CmrA positively regulates a small set of 11 genes, including PA14_38020 (homolog of PA2048), which is required for the MexS/T-dependent activation of mexEF-oprN PA2048 codes for a protein sharing conserved domains with the quinol monooxygenase YgiN from Escherichia coli Interestingly, exposure of strain PA14 to toxic electrophilic molecules (glyoxal, methylglyoxal, and cinnamaldehyde) strongly activates the CmrA pathway and upregulates MexEF-OprN and, thus, increases the resistance of P. aeruginosa to the pump substrates. A picture emerges in which MexEF-OprN is central in the response of the pathogen to stresses affecting intracellular redox homeostasis.


Subject(s)
AraC Transcription Factor/genetics , Bacterial Outer Membrane Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Regulation, Bacterial/drug effects , Membrane Transport Proteins/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Acrolein/analogs & derivatives , Acrolein/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/biosynthesis , Chloramphenicol/pharmacology , Glyoxal/pharmacology , Membrane Transport Proteins/biosynthesis , Microbial Sensitivity Tests , Pyruvaldehyde/pharmacology
6.
Antimicrob Agents Chemother ; 60(4): 2302-10, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26833155

ABSTRACT

Multidrug-resistant mutants ofPseudomonas aeruginosathat overproduce the active efflux system MexEF-OprN (callednfxCmutants) have rarely been characterized in the hospital setting. Screening of 221 clinical strains exhibiting a reduced susceptibility to ciprofloxacin (a substrate of MexEF-OprN) and imipenem (a substrate of the negatively coregulated porin OprD) led to the identification of 43 (19.5%)nfxCmutants. Subsequent analysis of 22 nonredundant mutants showed that, in contrast to theirin vitro-selected counterparts, only 3 of them (13.6%) harbored a disruptedmexSgene, which codes for the oxidoreductase MexS, whose inactivation is known to activate themexEF-oprNoperon through a LysR-type regulator, MexT. Nine (40.9%) of the clinicalnfxCmutants contained single amino acid mutations in MexS, and these were associated with moderate effects on resistance and virulence factor production in 8/9 strains. Finally, the remaining 10 (45.5%)nfxCmutants did not display mutations in any of the regulators known to controlmexEF-oprNexpression (themexS,mexT,mvaT, andampRgenes), confirming that other loci are responsible for pump upregulation in patients. Collectively, these data demonstrate thatnfxCmutants are probably more frequent in the hospital than previously thought and have genetic and phenotypic features somewhat different from those ofin vitro-selected mutants.


Subject(s)
Amino Acid Substitution , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/drug effects , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Imipenem/pharmacology , Microbial Sensitivity Tests , Mutation , Operon , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/metabolism , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...