Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 372: 114621, 2024 02.
Article in English | MEDLINE | ID: mdl-38029809

ABSTRACT

Traumatic brain injury (TBI) is an outside force causing a modification in brain function and/or structural brain pathology that upregulates brain inducible nitric oxide synthase (iNOS), instigating increased levels of nitric oxide activity which is implicated in secondary pathology leading to behavioral deficits (Hall et al., 2012; Garry et al., 2015; Kozlov et al., 2017). In mammals, TBI-induced NO production activates an immune response and potentiates metabolic crisis through mitochondrial dysfunction coupled with vascular dysregulation; however, the direct influence on pathology is complicated by the activation of numerous secondary cascades and activation of other reactive oxygen species. Drosophila TBI models have demonstrated key features of mammalian TBI, including temporary incapacitation, disorientation, motor deficits, activation of innate immunity (inflammation), and autophagy responses observed immediately after injury (Katzenberger et al., 2013; Barekat et al., 2016; Simon et al., 2017; Anderson et al., 2018; Buhlman et al., 2021b). We hypothesized that acute behavioral phenotypes would be associated with deficits in climbing behavior and increased oxidative stress. Because flies lack mammalian-like cardiovascular and adaptive immune systems, we were able to make our observations in the absence of vascular disruption and adaptive immune system interference in a system where highly targeted interventions can be rapidly evaluated. To demonstrate the induction of injury, ten-day-old transgenic flies received an injury of increasing angles from a modified high impact trauma (HIT) device where angle-dependent increases occurred for acute neurological behavior assessments and twenty-four-hour mortality, and survival was significantly decreased. Injury caused sex-dependent effects on climbing activity and measures of oxidative stress. Specifically, after a single 60-degree HIT, female flies exhibited significant impairments in climbing activity beyond that observed in male flies. We also found that several measures of oxidative stress, including Drosophila NOS (dNOS) expression, protein nitration, and hydrogen peroxide production were significantly decreased in female flies. Interestingly, protein nitration was also decreased in males, but surpassed sham levels with a more severe injury. We also observed decreased autophagy demand in vulnerable dopaminergic neurons in female, but not male flies. In addition, mitophagy initiation was decreased in females. Collectively, our data suggest that TBI in flies induces acute behavioral phenotypes and climbing deficits that are analogous to mammalian TBI. We also observed that various indices of oxidative stress, including dNOS expression, protein tyrosine nitration, and hydrogen peroxide levels, as well as basal levels of autophagy, are altered in response to injury, an effect that is more pronounced in female flies.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Animals , Male , Female , Drosophila melanogaster/metabolism , Brain Concussion/pathology , Oxygen , Hydrogen Peroxide , Brain/metabolism , Brain Injuries, Traumatic/pathology , Mammals
2.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290790

ABSTRACT

Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessive reactive oxygen species production, inefficient antioxidant capacity, or a combination are elusive. Identifying key oxidative stress contributors could inform targeted therapy. The absence of Drosophila parkin causes selective degeneration of a dopaminergic neuron cluster that is functionally homologous to the substantia nigra. By comparing observations in these to similar non-degenerating neurons, we may begin to understand mechanisms by which parkin loss of function causes selective degeneration. Using mitochondrially targeted redox-sensitive GFP2 fused with redox enzymes, we observed a sustained increased mitochondrial hydrogen peroxide levels in vulnerable dopaminergic neurons of parkin-null flies. Only transient increases in hydrogen peroxide were observed in similar but non-degenerating neurons. Glutathione redox equilibrium is preferentially dysregulated in vulnerable neuron mitochondria. To shed light on whether dysregulated glutathione redox equilibrium primarily contributes to oxidative stress, we supplemented food with folic acid, which can increase cysteine and glutathione levels. Folic acid improved survival, climbing, and transiently decreased hydrogen peroxide and glutathione redox equilibrium but did not mitigate whole-brain oxidative stress.

3.
J Gen Virol ; 102(8)2021 08.
Article in English | MEDLINE | ID: mdl-34382930

ABSTRACT

Since the successful use of vaccinia virus (VACV) in the immunization strategies to eliminate smallpox, research has been focused on the development of recombinant VACV strains expressing proteins from various pathogens. Attempts at decreasing the side effects associated with exposure to recombinant, wild-type viral strains have led to the development of attenuated viruses. Yet while these attenuated VACV's have improved safety profiles compared to unmodified strains, their clinical use has been hindered due to efficacy issues in stimulating a host immune response. This deficiency has largely been attributed to decreased production of the target protein for immunization. Efforts to increase protein production from attenuated VACV strains has largely centered around modulation of viral factors, while manipulation of the translation of viral mRNAs has been largely unexplored. In this study we evaluate the use of translation enhancing element hTEE-658 to increase recombinant protein production in an attenuated VACV system. Optimization of the use of this motif is also attempted by combining it with strategies that have demonstrated effectiveness in previous research. We show that extension of the 5' leader sequence containing hTEE-658 does not improve motif function, nor does the combination with other known translation enhancing elements. However, the sole use of hTEE-658 in an attenuated VACV system is shown to increase protein expression levels beyond those of a standard viral promoter when used with a wild-type virus. Taken together these results highlight the potential for hTEE-658 to improve the effectiveness of attenuated VACV vaccine candidates and give insights into the optimal sequence context for its use in vaccine design.


Subject(s)
Smallpox Vaccine/biosynthesis , Smallpox/prevention & control , Vaccinia virus , Animals , Cell Line , Chlorocebus aethiops , Humans , Vaccines, Attenuated/biosynthesis , Vaccines, Synthetic/biosynthesis , Vaccinia virus/genetics , Vaccinia virus/immunology
4.
Methods Mol Biol ; 2276: 113-127, 2021.
Article in English | MEDLINE | ID: mdl-34060036

ABSTRACT

Disruptions in mitochondrial redox activity are implicated in maladies ranging from those in which cells degenerate to those in which cell division is unregulated. This is not surprising given the pivotal role of mitochondria as ATP producers, reactive oxygen species (ROS) generators, and gatekeepers of apoptosis. While increased ROS are implicated in such a wide variety of disorders, pinpointing the cause of their hyperproduction is challenging. Elevated levels of ROS can result from increases in their production and/or decreases in their turnover. Disruptions in and/or hyperactivity of NADH-ubiquinone oxidoreductase or ubiquinone-cytochrome c oxidoreductase can cause excessive ROS generation. Alternatively, if respiration is functioning in a homeostatic manner, decreases in levels or activity of antioxidants like glutathione, CuZn- and Mn-superoxide dismutase, and catalase could result in excessive ROS. Because of the diversity of disorders in which oxidative damage occurs, the most effective therapeutic strategies may be those that address the putatively diverse causes of increased ROS. Strategies for determining antioxidant activity typically involve semiquantitative measurement of relative protein levels using immunochemistry and mass spectrometry. These methods can be applied to a variety of samples, but they do not lend themselves to detection of cell-specific analyses within tissue like brain.Because we are interested in elucidating the cause of oxidative stress in selectively vulnerable brain neurons, we have taken advantage of the easily manipulatable genetics and high fecundity of the fly. Using a cell type-targeting approach, we have driven redox sensitive green fluorescent proteins (roGFP2 ) into the mitochondria of tyrosine hydroxylase-producing (dopaminergic) neurons. In oxidizing conditions, the fluorophore's maximal excitation wavelength reversibly shifts. Therefore, the relative amount of mitochondrial protein oxidation can be determined by taking the ratio of fluorescence excited with two different lasers. In addition, these GFPs have been independently fused to human glutaredoxin-1 (mito-roGFP2-Grx1) and yeast oxidant receptor peroxidase (mito-roGFP2-Orp1), facilitating measurements of relative mitochondrial glutathione redox potential and H2O2 levels, respectively. In order to obtain a more comprehensive observation of redox states, we capture 3D images of roGFP2 excited by two different lasers. Mito- and cytoplasmic-roGFP2 -Grx1 and -Orp1 expression can be driven by hundreds of genetic drivers in Drosophila , facilitating fixed or living whole organism or tissue- and cell-specific redox measurements.


Subject(s)
Glutathione/metabolism , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Neurons/metabolism , Animals , Catalase/metabolism , Drosophila , Electron Transport Complex I/metabolism , Glutaredoxins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Hydrogen Peroxide/analysis , Imaging, Three-Dimensional/methods , Oxidation-Reduction , Reactive Oxygen Species/metabolism
5.
STAR Protoc ; 2(2): 100408, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33851139

ABSTRACT

Here, we describe a protocol for comprehensive quantification of autophagosome recruitment to mitochondria as an early step in mitophagy. Data collected using this protocol can be useful in the study of neurodegenerative disease, cancer, and metabolism-related disorders using models in which co-expression of mito-GFP and mCherry-Atg8a is feasible. This protocol has the advantage of assessment in an in vivo model organism (Drosophila melanogaster), where tissue-specific mitophagy can be investigated. For complete details on the use and execution of this protocol, please refer to (Cackovic et al., 2018).


Subject(s)
Autophagosomes , Autophagy/physiology , Mitochondria , Molecular Imaging/methods , Parkinson Disease , Animals , Autophagosomes/metabolism , Autophagosomes/pathology , Brain/cytology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Drosophila/cytology , Drosophila/metabolism , Microscopy, Confocal/methods , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy , Parkinson Disease/metabolism , Parkinson Disease/pathology
7.
Biochemistry ; 57(44): 6308-6318, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30371061

ABSTRACT

Cap-independent translation is believed to play an important role in eukaryotic protein synthesis, but the mechanisms of ribosomal recruitment and translation initiation remain largely unknown. Messenger RNA display was previously used to profile the human genome for RNA leader sequences that can enhance cap-independent translation. Surprisingly, many of the isolated sequences contain AUG triplets, suggesting a possible functional role for these motifs during translation initiation. Herein, we examine the sequence determinants of AUG triplets within a set of human translation enhancing elements (TEEs). Functional analyses performed in vitro and in cultured cells indicate that AUGs have the capacity to modulate mRNA translation either by serving as part of a larger ribosomal recruitment site or by directing the ribosome to defined initiation sites. These observations help constrain the functional role of AUG triplets in human TEEs and advance our understanding of this specific mechanism of cap-independent translation initiation.


Subject(s)
Codon , Enhancer Elements, Genetic , Methionine/genetics , Protein Biosynthesis , RNA Caps/metabolism , RNA, Messenger/metabolism , Base Sequence , Cells, Cultured , HeLa Cells , Humans , Mutation , Open Reading Frames , RNA Caps/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Ribosomes/metabolism
8.
J Agric Food Chem ; 61(27): 6589-96, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23742120

ABSTRACT

Aryloxyalkanoate dioxygenase-12 (AAD-12) was discovered from the soil bacterium Delftia acidovorans MC1 and is a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, which can impart herbicide tolerance to transgenic plants by catalyzing the degradation of certain phenoxyacetate, pyridyloxyacetate, and aryloxyphenoxypropionate herbicides. (1) The development of commercial herbicide-tolerant crops, in particular AAD-12-containing soybean, has prompted the need for large quantities of the enzyme for safety testing. To accomplish this, the enzyme was produced in Pseudomonas fluorescens (Pf) and purified to near homogeneity. A small amount of AAD-12 was partially purified from transgenic soybean and through various analytical, biochemical, and in vitro activity analyses demonstrated to be equivalent to the Pf-generated enzyme. Furthermore, results from in vitro kinetic analyses using a variety of plant endogenous compounds revealed activity with trans-cinnamate and indole-3-acetic acid (IAA). The catalytic efficiencies (kcat/Km) of AAD-12 using trans-cinnamate (51.5 M(-1) s(-1)) and IAA (8.2 M(-1) s(-1)) as substrates were very poor when compared to the efficiencies of plant endogenous enzymes. The results suggest that the presence of AAD-12 in transgenic soybean would not likely have an impact on major plant metabolic pathways.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Dioxygenases/chemistry , Dioxygenases/metabolism , Glycine max/metabolism , Herbicides/metabolism , Plants, Genetically Modified/metabolism , Pseudomonas fluorescens/genetics , Bacterial Proteins/genetics , Dioxygenases/genetics , Gene Expression , Herbicide Resistance , Herbicides/pharmacology , Iron/metabolism , Ketoglutaric Acids/metabolism , Kinetics , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Pseudomonas fluorescens/chemistry , Pseudomonas fluorescens/metabolism , Glycine max/chemistry , Glycine max/drug effects , Glycine max/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...