Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int Immunopharmacol ; 134: 112148, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718657

ABSTRACT

BACKGROUND: Vascular inflammation is the key event in early atherogenesis. Pro-inflammatory endothelial cells induce monocyte recruitment into the sub-endothelial layer of the artery. This requires endothelial expression of adhesion molecules namely intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), alongside chemokines production. Christia vespertilionis (L.f.) Bakh.f. (CV) possesses anti-inflammatory property. However, its potential anti-atherogenic effect in the context of vascular inflammation has yet to be explored. PURPOSE: To evaluate the anti-atherogenic mechanism of 80% ethanol extract of CV leaves on tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVECs). METHODS: Qualitative analysis of the CV extract was carried out by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The cell viability of HUVECs treated with CV extract was determined by MTT assay. The effect of CV extract on monocyte adhesion was determined by monocyte-endothelial adhesion assay. Protein expressions of ICAM-1, VCAM-1 and nuclear factor-kappa B (NF-κB) signaling pathway were determined by western blot while production of monocyte chemoattractant protein-1 (MCP-1) was determined by ELISA. RESULTS: LC-MS/MS analysis showed that CV extract composed of five main compounds, including schaftoside, orientin, isovitexin, 6-caffeoyl-D-glucose, and 3,3'-di-O-methyl ellagic acid. Treatment of CV extract at a concentration range from 5 to 60 µg/mL for 24 h maintained HUVECs viability above 90 %, therefore concentrations of 20, 40 and 60 µg/mL were selected for the subsequent experiments. All concentrations of CV extract showed a significant inhibitory effect on monocyte adhesion to TNF-α-activated HUVECs (p < 0.05). In addition, the protein expressions of ICAM-1 and VCAM-1 were significantly attenuated by CV in a concentration dependent manner (p < 0.001). At all tested concentrations, CV extract also exhibited significant inhibition on the production of MCP-1 (p < 0.05). Moreover, CV extract significantly inhibited TNF-α-induced phosphorylation of inhibitor of nuclear factor-κB kinase alpha/beta (IKKα/ß), inhibitor kappa B-alpha (IκBα), NF-κB and nuclear translocation of NF-κB (p < 0.05). CONCLUSION: CV extract inhibited monocyte adhesion to endothelial cells by suppressing protein expressions of cell adhesion molecules and production of chemokines through downregulation of NF-κB signaling pathway. Thus, CV has the potential to be developed as an anti-atherogenic agent for early treatment of atherosclerosis.

2.
J Ethnopharmacol ; 294: 115391, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35589022

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gynura procumbens (Lour.) Merr. (GP) is a herbaceous plant that grows in Malaysia and other parts of Southeast Asia. The herb is consumed as a remedy for various inflammatory-associated diseases, such as cancer, rheumatism, hypertension, diabetes mellitus and hyperlipidemia. Scientific studies demonstrate that GP extract possesses cardioprotective and anti-inflammatory effects. Cardiovascular disease is mainly caused by atherosclerosis, and inflammation plays a major role in all phases of atherosclerosis. The early inflammatory events in atherogenesis are the activation of endothelial cells and the recruitment of monocytes. AIM OF THE STUDY: This study aimed to evaluate the inhibitory effect of 80% ethanol extract of GP leaves (GPE) on the adherence of monocytes to the activated human endothelial cells and its underlying mechanism. MATERIAL AND METHODS: Qualitative and quantitative analyses of the extract were carried out by using a validated HPLC and UHPLC-MS/MS methods. The MTT test was used to select the range of concentration of extract for this study. The effect of GPE on TNF-α-induced monocyte-endothelial interaction was determined by the in vitro adhesion assay. Expression of cell surface proteins (ICAM-1, VCAM-1) and phosphorylation of nuclear factor kappa B (NF-κB) were determined by western blot, while expression of a chemokine (MCP-1) was identified by an enzyme-linked immunosorbent assay. RESULTS: HPLC and UHPLC-MS/MS analyses indicated that GPE contained chlorogenic acid, nicotiflorin and astragalin as the major compounds. GPE at 20, 40 and 60 µg/mL concentrations showed a significant reduction in monocyte adherence to endothelial cells and expression of ICAM-1 and MCP-1. However, only GPE at concentrations of 40 and 60 µg/mL was able to reduce VCAM-1 expression. Furthermore, GPE significantly inhibited IKKα/ß, IκBα, NF-κB phosphorylation and NF-κB translocation. CONCLUSION: In conclusion, GPE may inhibit monocyte adherence to the activated endothelial cells and expression of ICAM-1, VCAM-1 and MCP-1, which are important proteins for monocyte-endothelial interaction, by suppressing the NF-κB signaling pathway. The results of this study support the traditional use of GPE to counteract inflammation-associated diseases and suggest that GP can be a potential source for bioactive compounds for the development of anti-inflammatory agents to prevent atherosclerosis.


Subject(s)
Asteraceae , Atherosclerosis , Atherosclerosis/prevention & control , Cell Adhesion , Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , Monocytes/metabolism , NF-kappa B/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Signal Transduction , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
4.
Pharm Biol ; 59(1): 1203-1215, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34493166

ABSTRACT

CONTEXT: Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects. OBJECTIVE: This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet. MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months. RESULTS: In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p < 0.05), intima-media thickness (101.28 ± 3.4, 93.91 ± 2.93 vs. 143.78 ± 3.31 µM), vasoconstriction percentage induced by phenylephrine (102.5%, 88.3%, vs. 51.8%), sICAM-1 (0.49, 0.26 vs. 0.56 pg/mL) and sVCAM-1 (0.39, 0.25 vs. 0.45 pg/mL). GP extract supplementation increased vasorelaxation percentage induced by acetylcholine (78.4% vs. 47.3%) and sodium nitroprusside (84.2% vs. 53.7%), increased changes in plasma nitric oxide level (1.25%, 1.31% vs. 1.9%), and suppressed the elevation of TNF-α (0.39 vs. 1.02 pg/mL), IL-6 (0.43 vs. 0.77 pg/mL) and CRP (0.29 vs. 0.69 ng/mL) in the PM groups. CONCLUSIONS: GP extract might improve vascular dysfunction by suppressing the inflammatory response, consequently preventing blood pressure elevation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Plant Extracts/pharmacology , Postmenopause , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Asteraceae/chemistry , Atorvastatin/pharmacology , Blood Pressure/drug effects , Carotid Intima-Media Thickness , Diet, High-Fat , Disease Models, Animal , Dose-Response Relationship, Drug , Ethanol/chemistry , Female , Inflammation/pathology , Plant Extracts/administration & dosage , Rats , Rats, Sprague-Dawley , Vasoconstriction/drug effects , Vasodilation/drug effects
5.
Cardiovasc Toxicol ; 21(8): 605-618, 2021 08.
Article in English | MEDLINE | ID: mdl-34114196

ABSTRACT

Clinically, timely reperfusion strategies to re-establish oxygenated blood flow in ischemic heart diseases seem to salvage viable myocardium effectively. Despite the remarkable improvement in cardiac function, reperfusion therapy could paradoxically trigger hypoxic cellular injury and dysfunction. Experimental laboratory models have been developed over the years to explain better the pathophysiology of cardiac ischemia-reperfusion injury, including the in vitro hypoxia-reoxygenation cardiac injury model. Furthermore, the use of nutritional myocardial conditioning techniques have been successful. The cardioprotective potential of flavonoids have been greatly linked to its anti-oxidant, anti-apoptotic and anti-inflammatory properties. While several studies have reviewed the cardioprotective properties of flavonoids, there is a scarce evidence of their function in the hypoxia-reoxygenation injury cell culture model. Hence, the aim of this review was to lay out and summarize our current understanding of flavonoids' function in mitigating hypoxia-reoxygenation cardiac injury based on evidence from the last five years. We also discussed the possible mechanisms of flavonoids in modulating the cardioprotective effects as such information would provide invaluable insight on future therapeutic application of flavonoids.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Diet , Flavonoids/pharmacology , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/drug effects , Animals , Apoptosis/drug effects , Disease Models, Animal , Inflammation Mediators/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Signal Transduction
6.
Front Pharmacol ; 11: 504624, 2020.
Article in English | MEDLINE | ID: mdl-33328981

ABSTRACT

Background: Gynura species have been used traditionally to treat various ailments, such as fever, pain, and to control blood glucose level. This systematic review critically discusses studies regarding Gynura species that exhibited antioxidant and anti-inflammatory effects, thus providing perspectives and instructions for future research of the plants as a potential source of new dietary supplements or medicinal agents. Methods: A literature search from internet databases of PubMed, Scopus, Science Direct, e-theses Online Service, and ProQuest was carried out using a combination of keywords such as "Gynura," "antioxidant," "anti-inflammatory," or other related words. Research articles were included in this study if they were experimental (in vitro and in vivo) or clinical studies on the antioxidant or anti-inflammatory effects of Gynura species and if they were articles published in English. Results: Altogether, 27 studies on antioxidant and anti-inflammatory effects of Gynura species were selected. The antioxidant effects of Gynura species were manifested by inhibition of reactive oxygen species production and lipid peroxidation, modulation of glutathione-related parameters, and enzymatic antioxidant production or activities. The anti-inflammatory effects of Gynura species were through the modulation of inflammatory cytokine production, inhibition of prostaglandin E2 and nitric oxide production, cellular inflammatory-related parameters, and inflammation in animal models. The potential anti-inflammatory signaling pathways modulated by Gynura species are glycogen synthase kinase-3, nuclear factor erythroid 2-related factor 2, PPARγ, MAPK, NF-κB, and PI3K/Akt. However, most reports on antioxidant and anti-inflammatory effects of the plants were on crude extracts, and the chemical constituents contributing to bioactivities were not clearly understood. There is a variation in quality of studies in terms of design, conduct, and interpretation, and in-depth studies on the underlying mechanisms involved in antioxidant and anti-inflammatory effects of the plants are in demand. Moreover, there is limited clinical study on antioxidant and anti-inflammatory effects of Gynura species. Conclusion: This review highlighted antioxidant and anti-inflammatory effects of genus Gynura and supported their traditional uses to treat oxidative stress and inflammatory-related diseases. This review is expected to catalyze further studies on genus Gynura. However, extensive preclinical data need to be generated from toxicity and pharmacokinetic studies before clinical studies can be pursued for their development into clinical medicines to treat oxidative stress and inflammatory conditions.

7.
Article in English | MEDLINE | ID: mdl-31662779

ABSTRACT

Gynura procumbens (Lour.) Merr. (GP) has been reported in previous studies to possess antihyperlipidaemic, antioxidative, and cardioprotective properties. This study was aimed to determine the effect of standardised 80% ethanol extract of GP on lipid profiles and oxidative status of hypercholesterolemic rats. Postmenopausal (PM) Sprague-Dawley rats were ovariectomised and fed with 2% cholesterol diet fortified with five times heated palm oil to develop hyperlipidaemia status. Two doses of the extract (250 and 500 mg/kg) and atorvastatin (10 mg/kg) were administered once daily via oral gavage for 24 weeks. Systolic blood pressure (SBP) was increased during the first month in the postmenopausal group and decreased with GP supplementation. Lipid droplets accumulation was shown at the tunica media (TM) area of the aorta in the postmenopausal group and reduced with GP supplementation. Total cholesterol (TC), total triglycerides (TG), low-density lipoprotein (LDL), and malondialdehyde (MDA) levels increased (p < 0.05) at 3 and 6 months in the postmenopausal group and were reduced with GP supplementation. GP also increased high-density lipoprotein (HDL) level in the postmenopausal group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were reduced in the postmenopausal group compared to control in the sham group but increased (p < 0.05) with GP supplementation. The results showed that the higher dose of GP (500 mg/kg) gave better effect. GP has the ability to reduce oxidative stress and prevent membrane cell damage through antioxidant enzyme activity modification and lipid profile changes in postmenopausal rats related to atherosclerosis.

8.
Mini Rev Med Chem ; 19(17): 1407-1426, 2019.
Article in English | MEDLINE | ID: mdl-30706809

ABSTRACT

Myocardial infarction is a major cause of deaths globally. Modulation of several molecular mechanisms occurs during the initial stages of myocardial ischemia prior to permanent cardiac tissue damage, which involves both pathogenic as well as survival pathways in the cardiomyocyte. Currently, there is increasing evidence regarding the cardioprotective role of vitamin E in alleviating the disease. This fat-soluble vitamin does not only act as a powerful antioxidant; but it also has the ability to regulate several intracellular signalling pathways including HIF-1, PPAR-γ, Nrf-2, and NF-κB that influence the expression of a number of genes and their protein products. Essentially, it inhibits the molecular progression of tissue damage and preserves myocardial tissue viability. This review aims to summarize the molecular understanding of the cardiomodulation in myocardial infarction as well as the mechanism of vitamin E protection.


Subject(s)
Myocardial Infarction/drug therapy , Protective Agents/pharmacology , Vitamin E/pharmacology , Animals , Antioxidants/pharmacology , Cell Survival/drug effects , Humans , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Protective Agents/chemistry , Signal Transduction/drug effects , Vitamin E/chemistry
9.
Exp Gerontol ; 113: 1-9, 2018 11.
Article in English | MEDLINE | ID: mdl-30248357

ABSTRACT

Aging is characterized by progressive decline in biochemical and physiological functions. According to the free radical theory of aging, aging results from oxidative damage due to the accumulation of excess reactive oxygen species (ROS). Mitochondria are the main source of ROS production and are also the main target for ROS. Therefore, a diet high in antioxidant such as honey is potentially able to protect the body from ROS and oxidative damage. Gelam honey is higher in flavonoid content and phenolic compounds compared to other local honey. This study was conducted to determine the effects of gelam honey on age related protein expression changes in cardiac mitochondrial rat. A total of 24 Sprague-Dawley male rats were divided into two groups: the young group (2 months old), and aged group (19 months old). Each group were then subdivided into two groups: control group (force-fed with distilled water), and treatment group (force-fed with gelam honey, 2.5 g/kg), and were treated for 8 months. Comparative proteomic analysis of mitochondria from cardiac tissue was then performed by high performance mass spectrometry (Q-TOF LCMS/MS) followed by validation of selected proteins by Western blotting. Proteins were identified using Spectrum Mill software and were subjected to stringent statistical analysis. A total of 286 proteins were identified in the young control group (YC) and 241 proteins were identified in the young gelam group (YG). In the aged group, a total of 243 proteins were identified in control group (OC), and 271 proteins in gelam group (OG). Comparative proteome profiling identified 69 proteins with different abundance (p < 0.05) in OC when compared to YC, and also in YG when compared to YC. On the other hand, 55 proteins were found to be different in abundance when comparing OG with OC. In the aged group, gelam honey supplementation affected the relative abundance of 52 proteins with most of these proteins showing a decrease in the control group. Bioinformatics analysis showed that the majority of the affected proteins were involved in the respiratory chain (OXPHOS) which play an important role in maintaining mitochondrial function.


Subject(s)
Aging , Honey , Mitochondria, Heart/physiology , Oxidative Phosphorylation , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Antioxidants/chemistry , Dietary Supplements , Flavonoids/chemistry , Male , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
10.
Oncol Lett ; 16(1): 73-82, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29930713

ABSTRACT

Optimization of critical factors affects transduction efficiency and is able to reduce reagent consumption. The present study aimed to determine the optimum transduction conditions of small hairpin (sh)RNA against peroxiredoxin 4 (PRDX4) in the HepG2 cell line. Cell viability assays were conducted based on serum condition, incubation time, polybrene concentration and antibiotic dose selection. Non-targeting control shRNA was transduced into HepG2 cells in a 5-fold serial dilution, and colonies positive for green fluorescent protein were counted using ImageJ software. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to validate PRDX4 expression. The optimum cell density for transduction was 5.0×103 cells/well in 96-well plates to achieve 40 to 50% confluency the following day. The transduction media consisted of 10% fetal bovine serum (FBS) and 12 µg/ml polybrene, and was used to dilute lentiviral particles at a functional titer of 4.9×105 TU/ml for multiplicity of infection (MOI) of 20, 15 and 10, for 24 h of incubation. Selection with 7 µg/ml puromycin was performed in transduced cells. shRNA 3 was revealed to inhibit PRDX4 mRNA and protein expression. In conclusion, PRDX4 was successfully silenced in 5.0×103 HepG2 cells cultured with 10% FBS and 12 µg/ml polybrene, at a 4.9×105 TU/ml functional titer for MOI of 20, 15 and 10.

11.
BMC Complement Altern Med ; 15: 64, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25886747

ABSTRACT

BACKGROUND: To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells. METHODS: HepG2 cells were treated with 70 µM GTT for 48 hours and differentially expressed protein spots were determined by two-dimensional electrophoresis (2DE), identified by MALDI-TOF mass spectrometer (MS) and validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: GTT treatment on HepG2 cells showed a total of five differentially expressed proteins when compared to their respective untreated cells where three proteins were down-regulated and two proteins were up-regulated. One of these upregulated proteins was identified as peroxiredoxin-4 (Prx4). Validation by qRT-PCR however showed decreased expression of Prx4 mRNA in HepG2 cells following GTT treatment. CONCLUSIONS: GTT might directly influence the expression dynamics of peroxiredoxin-4 to control proliferation in liver cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Hepatoblastoma/metabolism , Liver Neoplasms/metabolism , Liver/drug effects , Peroxiredoxins/metabolism , Tocotrienols/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Bile Duct Neoplasms , Chromans/metabolism , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Hep G2 Cells , Hepatoblastoma/drug therapy , Humans , Liver/metabolism , Liver Neoplasms/drug therapy , Proteins/metabolism , Proteomics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tocotrienols/therapeutic use , Up-Regulation , Vitamin E/analogs & derivatives , Vitamin E/metabolism , Vitamins/pharmacology , Vitamins/therapeutic use
12.
Oxid Med Cell Longev ; 2014: 673628, 2014.
Article in English | MEDLINE | ID: mdl-25505937

ABSTRACT

Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities.


Subject(s)
Honey , Oxidative Stress/drug effects , Age Factors , Animals , Antioxidants/pharmacology , Dietary Supplements , Male , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
13.
BMC Complement Altern Med ; 14: 108, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24655584

ABSTRACT

BACKGROUND: The interaction between ionizing radiation and substances in cells will induce the production of free radicals. These free radicals inflict damage to important biomolecules such as chromosomes, proteins and lipids which consequently trigger the expression of genes which are involved in protecting the cells or repair the oxidative damages. Honey has been known for its antioxidant properties and was used in medical and cosmetic products. Currently, research on honey is ongoing and diversifying. The aim of this study was to elucidate the role of Gelam honey as a radioprotector in human diploid fibroblast (HDFs) which were exposed to gamma-rays by determining the expression of genes and proteins involved in cell cycle regulation and cell death. METHODS: Six groups of HDFs were studied viz. untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/ml of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma-rays at the dose rate of 0.25 Gy/min. RESULTS: Our findings showed that, gamma-irradiation at 1 Gy up-regulated ATM, p53, p16ink4a and cyclin D1 genes and subsequently initiated cell cycle arrest at G0/G1 phase and induced apoptosis (p < 0.05). Pre-treatment with Gelam honey however caused down regulation of these genes in irradiated HDFs while no significant changes was observed on the expression of GADD45 and PAK genes. The expression of ATM and p16 proteins was increased in irradiated HDFs but the p53 gene was translated into p73 protein which was also increased in irradiated HDFs. Gelam honey treatment however significantly decreased the expression of ATM, p73, and p16 proteins (p < 0.05) while the expression of cyclin D1 remained unchanged. Analysis on cell cycle profile showed that cells progressed to S phase with less percentage of cells in G0/G1 phase with Gelam honey treatment while apoptosis was inhibited. CONCLUSION: Gelam honey acts a radioprotector against gamma-irradiation by attenuating radiation-induced cell death.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Biological Products/pharmacology , Cell Cycle/drug effects , Fibroblasts/drug effects , Gamma Rays , Honey , Apoptosis/genetics , Apoptosis/radiation effects , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle/genetics , Cell Cycle/radiation effects , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA-Binding Proteins/metabolism , Diploidy , Down-Regulation , Fibroblasts/metabolism , Fibroblasts/radiation effects , G1 Phase , Gene Expression , Humans , Nuclear Proteins/metabolism , S Phase , Tumor Protein p73 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism
14.
Clinics (Sao Paulo) ; 68(11): 1446-54, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24270958

ABSTRACT

OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.


Subject(s)
Antioxidants/pharmacology , DNA Damage/drug effects , Honey , Leptospermum/chemistry , Oxidative Stress/drug effects , Age Factors , Animals , Catalase/analysis , Comet Assay , Glutathione Peroxidase/analysis , Male , Malondialdehyde/blood , Rats , Rats, Sprague-Dawley , Reference Values , Reproducibility of Results , Superoxide Dismutase/analysis , Time Factors
15.
Clinics ; 68(11): 1446-1454, 1jan. 2013. tab, graf
Article in English | LILACS | ID: lil-690630

ABSTRACT

OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. .


Subject(s)
Animals , Male , Rats , Antioxidants/pharmacology , DNA Damage/drug effects , Honey , Leptospermum/chemistry , Oxidative Stress/drug effects , Age Factors , Comet Assay , Catalase/analysis , Glutathione Peroxidase/analysis , Malondialdehyde/blood , Rats, Sprague-Dawley , Reference Values , Reproducibility of Results , Superoxide Dismutase/analysis , Time Factors
16.
Saudi Med J ; 34(3): 266-75, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23475091

ABSTRACT

OBJECTIVE: To determine the association between carotid femoral pulse wave velocity (PWVCF); augmentation index (AI); and high-sensitivity C reactive protein (hs-CRP) with metabolic syndrome (MetS), and to determine the influence of ethnicity on PWVCF and AI, and the association between high hs-CRP and increased PWV, and AI in MetS. METHODS: A cross-sectional study was conducted at Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia from September 2009 to September 2011. Three hundred and eighty men (Chinese and Malays) were recruited from the study. The PWVCF and AI were measured by Vicorder (SMT Medical, Wuerzburg, Germany). The hs-CRP level was also determined. We defined MetS using the International Diabetes Federation (IDF) and harmonized criteria. RESULTS: Malays had higher AI compared to the Malaysian Chinese. Patients with MetS had higher PWVCF (IDF criteria: 8.5 [8.3-8.7] versus 8.2 [8.0-8.4] m/s, p=0.03; harmonized criteria: 8.5 [8.4-8.7] versus 8.2 [8.0-8.4] m/s, p=0.007) and hs-CRP (IDF criteria: 0.9+/-2.0 versus 0.4+/-1.1 mg/L, p=0.0007; harmonized criteria: 0.8+/-1.9 versus 0.4+/-1.1 mg/L, p=0.002) compared to non-MetS. In subjects with MetS, those with high hs-CRP (>3 mg/L) had higher PWVCF. CONCLUSION: Augmentation index values were significantly higher in Malays compared with Malaysian Chinese. Metabolic syndrome was associated with increased PWVCF and hs-CRP. Patients with MetS and high hs-CRP were associated with higher PWVCF. The measurement of hs-CRP reflects the degree of subclinical vascular damage in MetS.


Subject(s)
C-Reactive Protein/metabolism , Metabolic Syndrome/blood , Urban Population , Cross-Sectional Studies , Humans , Malaysia , Male , Metabolic Syndrome/physiopathology , Risk Factors , Vascular Stiffness
17.
Molecules ; 18(2): 2200-11, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23434870

ABSTRACT

The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05). Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05). Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.


Subject(s)
Antioxidants/metabolism , Diploidy , Fibroblasts/drug effects , Fibroblasts/enzymology , Gamma Rays , Honey , Radiation-Protective Agents/pharmacology , Catalase/genetics , Catalase/metabolism , Child , Fibroblasts/radiation effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/radiation effects , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Humans , Male , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
18.
Nutr J ; 12: 2, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23286246

ABSTRACT

BACKGROUND: Cigarette smoke contains free radicals and an have adverse effect to the immune system. Supplementation of palm oil vitamin E (palmvitee), is known has antioxidant properties is thought to be beneficial for system immune protection against free radicals activity. The objective of the study was to determine the effect of palmvitee supplementation on immune response in smokers. METHODS: This study involved a group of smokers and nonsmokers who received 200 mg/day palmvitee and placebo for the control group. Blood samples were taken at 0, 12 and 24 weeks of supplementation. Plasma tocopherol and tocotrienol were determined by HPLC, lymphocyte proliferation by lymphocyte transformation test (LTT) and enumeration of lymphocytes T and B cells by flow cytometry. Statistical analysis was performed by Mann-Whitney U-test for non-parametric data distribution and correlation among the variables was examined by Spearman. RESULTS: Plasma tocopherol and tocotrienol were increased in vitamin E supplemented group as compared to placebo group. Urine cotinine levels and serum α1-antitrypsin were significantly higher in smokers compared to nonsmokers. Lymphocyte proliferation induced by PHA showed an increasing trend with palmvitee supplementation in both smokers and nonsmokers. Natural killer cells were decreased; CD4+ cells and B cells were increased in smokers compared to nonsmokers but were unaffected with vitamin E supplementation except in the percentage of B cells which were increased in nonsmokers supplemented palmvitee compared to placebo. CD4+/CD8+ ratio was increased in smokers compared to nonsmokers. The high TWBC count observed in smokers correlated with the increased CD4+ and B cells. CONCLUSIONS: Smoking caused alterations in certain immune parameters and palmvitee supplementation tended to cause an increase in lymphocytes transformation test but had no effect on CD3+, CD4+, CD8+, NK cells and B cells except B cells percentage in nonsmokers.


Subject(s)
Dietary Supplements , Immunity, Cellular , Plant Oils/administration & dosage , Smoking/adverse effects , Tocopherols/administration & dosage , Adult , Antioxidants/administration & dosage , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Cotinine/urine , Creatinine/urine , Humans , Killer Cells, Natural/immunology , Lymphocyte Count , Male , Middle Aged , Palm Oil , Phytohemagglutinins/metabolism , Plant Oils/chemistry , Single-Blind Method , Smoking/blood , Smoking/immunology , Tobacco Products/adverse effects , Tocotrienols/administration & dosage , Tocotrienols/blood , Young Adult , alpha 1-Antitrypsin/blood
19.
Int J Vasc Med ; 2012: 404025, 2012.
Article in English | MEDLINE | ID: mdl-22778962

ABSTRACT

Oil thermoxidation during deep frying generates harmful oxidative free radicals that induce inflammation and increase the risk of hypertension. This study aimed to investigate the effect of repeatedly heated palm oil on blood pressure, aortic morphometry, and vascular cell adhesion molecule-1 (VCAM-1) expression in rats. Male Sprague-Dawley rats were divided into five groups: control, fresh palm oil (FPO), one-time-heated palm oil (1HPO), five-time-heated palm oil (5HPO), or ten-time-heated palm oil (10HPO). Feeding duration was six months. Blood pressure was measured at baseline and monthly using tail-cuff method. After six months, the rats were sacrificed and the aortic arches were dissected for morphometric and immunohistochemical analyses. FPO group showed significantly lower blood pressure than all other groups. Blood pressure was increased significantly in 5HPO and 10HPO groups. The aortae of 5HPO and 10HPO groups showed significantly increased thickness and area of intima-media, circumferential wall tension, and VCAM-1 than other groups. Elastic lamellae were disorganised and fragmented in 5HPO- and 10HPO-treated rats. VCAM-1 expression showed a significant positive correlation with blood pressure. In conclusion, prolonged consumption of repeatedly heated palm oil causes blood pressure elevation, adverse remodelling, and increased VCAM-1, which suggests a possible involvement of inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...