Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10678, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724551

ABSTRACT

Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons. Immunofluorescence microscopy of the exocrine and endocrine pancreas, salivary glands, and intestinal segments, confirmed these patterns of cellular expression and provided information on the subcellular localizations of the LRBA protein. Immuno-electron microscopy demonstrated that in neurons and endocrine cells, which co-express LRBA and its closest relative, neurobeachin, both proteins display partial association with endomembranes in complementary, rather than overlapping, subcellular distributions. Prominent manifestations of human LRBA deficiency, such as inflammatory bowel disease or endocrinopathies, are believed to be primarily due to immune dysregulation. However, as essentially all affected tissues also express LRBA, it is possible that LRBA deficiency enhances their vulnerability and contributes to the pathogenesis.


Subject(s)
Endocrine Glands , Neurons , Animals , Neurons/metabolism , Mice , Humans , Endocrine Glands/metabolism , Exocrine Glands/metabolism , Mutation , Epithelium/metabolism , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/pathology
2.
J Cell Biol ; 221(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36214847

ABSTRACT

Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.


Subject(s)
Centrosome , Dendritic Cells , Cell Cycle Checkpoints , Cell Movement , Centrosome/metabolism , Chemotaxis , Cytokines/metabolism , Dendritic Cells/metabolism , Humans , Microtubule-Organizing Center , Mitosis , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/metabolism
3.
Dev Growth Differ ; 58(6): 562-74, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27397870

ABSTRACT

The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well-documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally-regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate. More recently, however, we have shown that for the first 3-4 h after pupariation SGs undergo tremendous endocytosis and vacuolation followed by vacuole neutralization and membrane consolidation. Furthermore, from 8 to 10 h after puparium formation (APF) SGs display massive apocrine secretion of a diverse set of cellular proteins. Here, we show that during the period from 11 to 12 h APF, the prepupal glands are very active in calcium oxalate (CaOx) extrusion that resembles renal or nephridial excretory activity. We provide genetic evidence that Prestin, a Drosophila homologue of the mammalian electrogenic anion exchange carrier SLC26A5, is responsible for the instantaneous production of CaOx by the late prepupal SGs. Its positive regulation by the protein kinases encoded by fray and wnk lead to increased production of CaOx. The formation of CaOx appears to be dependent on the cooperation between Prestin and the vATPase complex as treatment with bafilomycin A1 or concanamycin A abolishes the production of detectable CaOx. These data demonstrate that prepupal SGs remain fully viable, physiologically active and engaged in various cellular activities at least until early pupal period, that is, until moments prior to the execution of PCD.


Subject(s)
Anion Transport Proteins/biosynthesis , Calcium Oxalate/metabolism , Drosophila Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Salivary Glands/metabolism , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Biological Transport, Active/physiology , Drosophila Proteins/genetics , Drosophila melanogaster , Protein Serine-Threonine Kinases/genetics
4.
J Histochem Cytochem ; 62(10): 739-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24980853

ABSTRACT

Inosine-5'-monophosphate dehydrogenase catalyzes the critical step in the de novo synthesis of guanosine nucleotides: the oxidation of inosine monophosphate to xanthosine monophosphate. This reaction can be inhibited by specific inhibitors, such as ribavirin or mycophenolic acid, which are widely used in clinical treatment when required to inhibit the proliferation of viruses or cells. However, it was recently found that such an inhibition affects the cells, leading to a redistribution of IMPDH2 and the appearance of IMPDH2 inclusions in the cytoplasm. According to their shape, these inclusions have been termed "Rods and Rings" (R&R). In this work, we focused on the subcellular localization of IMPDH2 protein and the ultrastructure of R&R inclusions. Using microscopy and western blot analysis, we show the presence of nuclear IMPDH2 in human cells. We also show that the nuclear pool has an ability to form Rod structures after inhibition by ribavirin. Concerning the ultrastructure, we observed that R&R inclusions in cellulo correspond to the accumulation of fibrous material that is not surrounded by a biological membrane. The individual fibers are composed of regularly repeating subunits with a length of approximately 11 nm. Together, our findings describe the localization of IMPDH2 inside the nucleus of human cells as well as the ultrastructure of R&R inclusions.


Subject(s)
Cell Nucleus/enzymology , Cell Nucleus/ultrastructure , Cytoplasm/enzymology , Cytoplasm/ultrastructure , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/ultrastructure , Active Transport, Cell Nucleus/drug effects , Cell Nucleus/metabolism , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/metabolism
5.
J Struct Biol ; 186(1): 141-52, 2014 04.
Article in English | MEDLINE | ID: mdl-24556578

ABSTRACT

The limited specimen tilting range that is typically available in electron tomography gives rise to a region in the Fourier space of the reconstructed object where experimental data are unavailable - the missing wedge. Since this region is sharply delimited from the area of available data, the reconstructed signal is typically hampered by convolution with its impulse response, which gives rise to the well-known missing wedge artefacts in 3D reconstructions. Despite the recent progress in the field of reconstruction and regularization techniques, the missing wedge artefacts remain untreated in most current reconstruction workflows in structural biology. Therefore we have designed a simple Fourier angular filter that effectively suppresses the ray artefacts in the single-axis tilting projection acquisition scheme, making single-axis tomographic reconstructions easier to interpret in particular at low signal-to-noise ratio in acquired projections. The proposed filter can be easily incorporated into current electron tomographic reconstruction schemes.


Subject(s)
Electron Microscope Tomography/methods , Image Processing, Computer-Assisted , Animals , Artifacts , Cerebellum/ultrastructure , Corylus/ultrastructure , Fourier Analysis , Pollen/ultrastructure , Rats , Signal-To-Noise Ratio , Trypanosoma brucei brucei/ultrastructure
7.
Biol Cell ; 105(11): 519-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23937274

ABSTRACT

BACKGROUND INFORMATION: A Polycomb (PcG) body is an orphan nuclear subcompartment characterised by accumulations of Polycomb repressive complex 1 (PRC1) proteins. However, seemingly contradictory reports have appeared that describe the PcG bodies either as protein-based bodies in the interchromatin compartment or chromatin domains. In this respect, molecular crowding is an important factor for the assembly and stability of nuclear subcompartments. In order to settle this contradiction, crowding experiments, that represent a convenient model distinguishing between interchromatin and chromatin compartments, were carried out. RESULTS: In sucrose-hypertonically induced crowding, we observed in U-2 OS cells that PcG bodies disappeared, but persisted as nuclear domains characterised by accumulations of DNA. This phenomenon was also observed in cells hypertonically treated with sorbitol and NaCl. Importantly, the observed changes were quickly reversible after re-incubation of cells in normal medium. We found that the PcG foci disappearance and the dissociation of PRC1 proteins (BMI1 and RING1a proteins) from chromatin were associated with their hyper-phosphorylation. In addition, under hyper- and hypotonic conditions, the behaviour of the PcG bodies differed from that of the typical nucleoplasmic body. CONCLUSION: PRC1 proteins accumulations do not represent a genuine nuclear subcompartment. The PcG body is a chromosomal domain, rather than a nucleoplasmic body.


Subject(s)
Chromatin/metabolism , Macromolecular Substances/metabolism , Polycomb-Group Proteins/metabolism , Anthraquinones/metabolism , Cell Line, Tumor , Fluorescence , Humans , Hypertonic Solutions/pharmacology , Phosphorylation/drug effects , Polycomb Repressive Complex 1/metabolism , RNA/genetics , RNA/metabolism , Staining and Labeling , Sucrose/pharmacology , Transcription, Genetic/drug effects
8.
Nucleus ; 2(5): 489-99, 2011.
Article in English | MEDLINE | ID: mdl-21989237

ABSTRACT

At the onset of Drosophila metamorphosis the steroid hormone ecdysone induces a process leading to a rapid degeneration of the larval salivary glands (SGs). Ecdysone acts through the ecdysone receptor heterodimer, which activates primary response genes. In particular these genes include the Broad-Complex (BR-C) gene encoding a set of BTB/POZ-transcription factors, among which the Z1 isoform is critical for SG cell death. The timing of SG disappearance depends upon of p127 (l(2)gl) , a cytoskeletal tumor suppressor that interacts with nonmuscle myosin II heavy chain (nmMHC) encoded by the zipper (zip) gene. Reduced l(2)gl expression delays SG histolysis whereas over-expression accelerates this process without affecting larval and pupal development. However, the mechanism by which l(2)gl controls SG histolysis remains yet unknown. Here we analyze the regulation controlled by p127 (l(2)gl) and nmMHC in the cytoplasm on the association of BR-C Z1 with chromatin and remodeling factors, such as Rpd3, Sin3A, and Smrter. In wild-type SGs these factors bind to chromatin but in l(2)gl SGs they accumulate in the cytoplasm and the cortical nuclear zone (CNZ). Similar chromatin exclusion occurs in SGs of developmentally delayed zip (E(br)) /+ larvae or can be achieved by high levels of nmMHC synthesis. The present data show that p127 (l(2)gl) and nmMHC regulate the access of BR-C Z1, Rpd3, Sin3A, and Smrter to chromatin. As the interaction between p127 (l(2)gl) and nmMHC occurs in the cytoplasm, we propose that these nuclear factors are processed by p127 (l(2)gl) and then released from p127 (l(2)gl) by nmMHC to allow their binding to chromatin. This process may constitute a novel mechanism of gene regulation, which in the absence of p127 (l(2)gl) , or excessive amounts of nmMHC, could lead to a fixed configuration in the pattern of gene expression that prevents further progression of SG differentiation, and programmed cell death (PCD). Such a transcriptional block could play a critical role in the neoplastic transformation of l(2)gl tissues. 


Subject(s)
Cytoskeletal Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Histone Deacetylase 1/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Apoptosis , Cytoskeletal Proteins/genetics , Cytoskeleton/metabolism , Drosophila/enzymology , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Ecdysone/metabolism , Larva , Myosin Type II/metabolism , Receptors, Steroid/metabolism , Salivary Glands/enzymology , Salivary Glands/metabolism , Sin3 Histone Deacetylase and Corepressor Complex
9.
Nucleus ; 2(3): 219-28, 2011.
Article in English | MEDLINE | ID: mdl-21818415

ABSTRACT

Polycomb group (PcG) proteins of the Polycomb repressive complex 1 (PRC1) are found to be diffusely distributed in nuclei of cells from various species. However they can also be localized in intensely fluorescent foci, whether imaged using GFP fusions to proteins of PRC1 complex, or by conventional immunofluorescence microscopy. Such foci are termed PcG bodies, and are believed to be situated in the nuclear intechromatin compartment. However, an ultrastructural description of the PcG body has not been reported to date. To establish the ultrastructure of PcG bodies in human U-2 OS cells stably expressing recombinant polycomb BMI1-GFP protein, we used correlative light-electron microscopy (CLEM) implemented with high-pressure freezing, cryosubstitution and on-section labeling of BMI1 protein with immunogold. This approach allowed us to clearly identify fluorescent PcG bodies, not as distinct nuclear bodies, but as nuclear domains enriched in separated heterochromatin fascicles. Importantly, high-pressure freezing and cryosubstitution allowed for a high and clear-cut immunogold BMI1 labeling of heterochromatin structures throughout the nucleus. The density of immunogold labeled BMI1 in the heterochromatin fascicles corresponding to fluorescent "PcG bodies" did not differ from the density of labeling of heterochromatin fascicles outside of the "PcG bodies". Accordingly, an appearance of the fluorescent "PcG bodies" seems to reflect a local accumulation of the labeled heterochromatin structures in the investigated cells. The results of this study should allow expansion of the knowledge about the biological relevance of the "PcG bodies" in human cells.


Subject(s)
Light , Microscopy, Electron , Repressor Proteins/chemistry , Cell Line, Tumor , Cryopreservation , Heterochromatin/metabolism , Humans , Immunohistochemistry , Polycomb-Group Proteins , Pressure , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...