Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 33(2): 418-426, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35104102

ABSTRACT

With three clinically approved antibody-drug conjugates targeting HER2, this target is clearly identified to be of interest in oncology. Moreover, the advent of new bioconjugation technologies producing site-specific homogenous conjugates led to the opportunity of developing new medicines linking antibodies and payloads. Here, a new relevant HER2-targeting ADC was obtained by the conjugation of monomethyl auristatin E onto trastuzumab using McSAF Inside bioconjugation technology. The antibody-drug conjugate formed presented an average drug-to-antibody ratio of 4 with a high homogeneity and an excellent stability especially when incubated with human serum albumin or in human plasma. Moreover, it demonstrated a strong efficacy in an HER2 xenograft tumor model in mice, superior to the clinically approved antibody-drug conjugate ado-trastuzumab emtansine, with a complete tumor regression observed both macroscopically and microscopically demonstrating its therapeutic potential.


Subject(s)
Breast Neoplasms , Immunoconjugates , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mice , Receptor, ErbB-2/therapeutic use , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Xenograft Model Antitumor Assays
2.
Bioconjug Chem ; 32(3): 595-606, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33630573

ABSTRACT

To overcome stability and heterogeneity issues of antibody-drug conjugates (ADCs) produced with existing bioconjugation technologies incorporating a maleimide motif, we developed McSAF Inside, a new technology based on a trifunctionalized di(bromomethyl)pyridine scaffold. Our solution allows the conjugation of a linker-payload to previously reduced interchain cysteines of a native antibody, resulting in disulfide rebridging. This leads to highly stable and homogeneous ADCs with control over the drug-to-antibody ratio (DAR) and the linker-payload position. Using our technology, we synthesized an ADC, MF-BTX-MMAE, built from anti-CD30 antibody cAC10 (brentuximab), and compared it to Adcetris, the first line treatment against CD30-positive lymphoma, in a CD30-positive lymphoma model. MF-BTX-MMAE displayed improved DAR homogeneity, with a solid batch-to-batch reproducibility, as well as enhanced stability in thermal stress conditions or in the presence of a free thiol-containing protein, such as human serum albumin (HSA). MF-BTX-MMAE showed antigen-binding, in vitro cytotoxicity, in vivo efficacy, and tolerability similar to Adcetris. Therefore, in accordance with current regulatory expectations for the development of new ADCs, McSAF Inside technology gives access to relevant ADCs with improved characteristics and stability.


Subject(s)
Immunoconjugates/metabolism , Ki-1 Antigen/immunology , Lymphoma/immunology , Animals , Disease Models, Animal , Mice , Proof of Concept Study
3.
ChemMedChem ; 16(6): 1034-1046, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33275308

ABSTRACT

Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are two closely related STAT family members that are crucial downstream effectors of tyrosine kinase oncoproteins such as FLT3-ITD in acute myeloid leukemia (AML) and BCR-ABL in chronic myeloid leukemia (CML). We recently developed and reported the synthesis of a first molecule called 17 f that selectively inhibits STAT5 signaling in myeloid leukemia cells and overcomes their resistance to chemotherapeutic agents. To improve the antileukemic effect of 17 f, we synthesized ten analogs of this molecule and analyzed their impact on cell growth, survival, chemoresistance and STAT5 signaling. Two compounds, 7 a and 7 a', were identified as having similar or higher antileukemic effects in various AML and CML cell lines. Both molecules were found to be more effective than 17 f at inhibiting STAT5 activity/expression and suppressing the chemoresistance of CML.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid/drug therapy , Quinolines/pharmacology , STAT5 Transcription Factor/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Suppressor Proteins/metabolism
4.
ACS Omega ; 5(3): 1557-1565, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32010829

ABSTRACT

Antibody-drug conjugates (ADCs) are the spearhead of targeted therapies. According to the technology used, the conjugation of a cytotoxic drug to an antibody can produce suboptimal heterogeneous species, impacting the overall efficacy. Herein, we describe the synthesis of HER2-targeting ADCs with three disulfide rebridging heads, allowing homogeneous and site-specific bioconjugation: dibromomaleimide (DBM), dithiomaleimide (DTM), and hybrid thio-bromomaleimide (TBM) chemical bricks to combine the properties of both previously used heads. The primary purpose of this study was to compare the reactivity of these three chemical bricks in the bioconjugation process. Then, the resulting ADCs were evaluated in terms of physicochemical stability, binding, and biological activity. We have demonstrated that the higher percentage of a drug-to-antibody ratio of 4 was obtained with TBM. Additionally, the reaction time was drastically reduced with TBM in comparison to DTM. The three ADCs showed good binding to HER2 and in vitro cytotoxicity, which validate the TBM structure as an attractive alternative scaffold for rebridging bioconjugation.

5.
Cancers (Basel) ; 12(1)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963765

ABSTRACT

Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.

6.
Cancers (Basel) ; 11(12)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861239

ABSTRACT

Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are crucial downstream effectors of tyrosine kinase oncogenes (TKO) such as BCR-ABL in chronic myeloid leukemia (CML) and FLT3-ITD in acute myeloid leukemia (AML). Both proteins have been shown to promote the resistance of CML cells to tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM). We recently synthesized and discovered a new inhibitor (17f) with promising antileukemic activity. 17f selectively inhibits STAT5 signaling in CML and AML cells by interfering with the phosphorylation and transcriptional activity of these proteins. In this study, the effects of 17f were evaluated on CML and AML cell lines that respectively acquired resistance to IM and cytarabine (Ara-C), a conventional therapeutic agent used in AML treatment. We showed that 17f strongly inhibits the growth and survival of resistant CML and AML cells when associated with IM or Ara-C. We also obtained evidence that 17f inhibits STAT5B but not STAT5A protein expression in resistant CML and AML cells. Furthermore, we demonstrated that 17f also targets oncogenic STAT5B N642H mutant in transformed hematopoietic cells.

7.
J Med Chem ; 60(14): 6119-6136, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28654259

ABSTRACT

Signal transducers and activators of transcription 5 (STAT5s) are crucial effectors of tyrosine kinase oncogenes in myeloid leukemias. Inhibition of STAT5 would contribute to reducing the survival of leukemic cells and also tackling their chemoresistance. In a first screening experiment, we identified hit 13 as able to inhibit STAT5 phosphorylation and leukemic cell growth. The synthesis of 18 analogues of 13 allowed us to identify one compound, 17f, as having the most potent antileukemic effect. 17f inhibited the growth of acute and chronic myeloid leukemia cells and the phosphorylation and transcriptional activity of STAT5. Importantly, 17f had minimal effects on bone marrow stromal cells that play vital functions in the microenvironment of hematopoietic and leukemic cells. We also demonstrated that 17f inhibits STAT5 but not STAT3, AKT, or Erk1/2 phosphorylation. These results suggest that 17f might be a new lead molecule targeting STAT5 signaling in myeloid leukemias.


Subject(s)
Antineoplastic Agents/chemistry , Indoles/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Quinolines/chemistry , STAT5 Transcription Factor/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/chemical synthesis , Quinolines/pharmacology , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL