Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Talanta ; 275: 126106, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38648687

ABSTRACT

Recent advances have significantly enhanced the use of smartphone devices for medical diagnostics. This study uses high-resolution cameras in mobile devices to capture and process bioassay images, enabling the quantification of diverse biomarkers across a range of diagnostic tests conducted on 96-well microplates. The study evaluates the effectiveness of this technology through protein quantification techniques and immunoassays that generate colorimetric responses at specific wavelengths. It includes the assessment of bicinchoninic acid and Bradford protein quantification methods, alongside a conventional immunoassay for detecting mare antibodies in colostrum to monitor foal immunodeficiencies. Further application involves the readout of magneto-actuated immunoassays aimed at quantifying bacteria. The results obtained from benchtop spectrophotometry at 595, 562, and 450 nm are compared with those acquired using a smartphone, which identified color intensities in shades of blue, purple, and yellow. This comparison yields promising correlations for the samples tested, suggesting a high degree of accuracy in the smartphone capability to analyze bioassay outcomes. The analysis via smartphone is facilitated by a specific app, which processes the images captured by the phone camera to quantify color intensities corresponding to different biomarker concentrations. Detection limits of 12.3 and 22.8 µg mL-1 for the bicinchoninic acid assay and 36.7 and 45.4 µg mL-1 for the Bradford are obtained for protein quantification using the spectrophotometer and the smartphone app, respectively. For mare's antibodies in colostrum, the values are 1.14 and 1.72 ng mL-1, while the detection of E. coli is performed at 2.0 x 104 and 2.9 × 104 CFU mL-1, respectively. This approach offers further advantages, including wide availability, cost-effectiveness, portability, compared to traditional and expensive benchtop instruments.

2.
Nat Nanotechnol ; 19(4): 554-564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225356

ABSTRACT

Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.


Subject(s)
Urease , Urinary Bladder Neoplasms , Mice , Animals , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/drug therapy , Administration, Intravesical , Radioisotopes/therapeutic use
3.
Mikrochim Acta ; 191(2): 82, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38191940

ABSTRACT

A novel approach is presented that combines filtration and the direct immunomagnetic separation of the retained bacteria Legionella in filters, for further electrochemical immunosensing. This strategy allows for the separation and preconcentration of the water-borne pathogen from high-volume samples, up to 1000 mL. The limit of detection of the electrochemical immunosensor resulted in 100 CFU mL-1 and improved up to 0.1 CFU mL-1 when the preconcentration strategy was applied in 1 L of sample (103-fold improvement). Remarkably, the immunosensor achieves the limit of detection in less than 2.5 h and simplified the analytical procedure. This represents the lowest concentration reported to date for electrochemical immunosensing of Legionella cells without the need for pre-enrichment or DNA amplification. Furthermore, the study successfully demonstrates the extraction of bacteria retained on different filtering materials using immunomagnetic separation, highlighting the high efficiency of the magnetic particles to pull out the bacteria directly from solid materials. This promising feature expands the applicability of the method beyond water systems for detecting bacteria retained in air filters of air conditioning units by directly performing the immunomagnetic separation in the filters.


Subject(s)
Biosensing Techniques , Legionella , Immunomagnetic Separation , Immunoassay , Bacteria , Water
4.
Pediatr Infect Dis J ; 43(3): 278-285, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38113520

ABSTRACT

BACKGROUND: Diagnosis of nontuberculous mycobacteria (NTM) infections remains a challenge. In this study, we describe the evaluation of an immunological NTM-interferon (IFN)-γ release assay (IGRA) that we developed using glycopeptidolipids (GPLs) as NTM-specific antigens. METHODS: We tested the NTM-IGRA in 99 samples from pediatric patients. Seventy-five were patients with lymphadenitis: 25 were NTM confirmed, 45 were of unknown etiology but compatible with mycobacterial infection and 5 had lymphadenitis caused by an etiologic agent other than NTM. The remaining 24 samples were from control individuals without lymphadenitis (latently infected with M. tuberculosis , uninfected controls and active tuberculosis patients). Peripheral blood mononuclear cells were stimulated overnight with GPLs. Detection of IFN-γ producing cells was evaluated by enzyme-linked immunospot assay. RESULTS: NTM culture-confirmed lymphadenitis patient samples had a significantly higher response to GPLs than the patients with lymphadenitis of unknown etiology but compatible with mycobacterial infection ( P < 0.001) and lymphadenitis not caused by NTM ( P < 0.01). We analyzed the response against GPLs in samples from unknown etiology lymphadenitis but compatible with mycobacterial infection cases according to the tuberculin skin test (TST) response, and although not statistically significant, those with a TST ≥5 mm had a higher response to GPLs when compared with the TST <5 mm group. CONCLUSIONS: Stimulation with GPLs yielded promising results in detecting NTM infection in pediatric patients with lymphadenitis. Our results indicate that the test could be useful to guide the diagnosis of pediatric lymphadenitis. This new NTM-IGRA could improve the clinical handling of NTM-infected patients and avoid unnecessary misdiagnosis and treatments.


Subject(s)
Lymphadenitis , Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Tuberculosis , Humans , Child , Interferon-gamma Release Tests/methods , Leukocytes, Mononuclear , Tuberculosis/diagnosis , Tuberculin Test , Mycobacterium Infections, Nontuberculous/diagnosis , Lymphadenitis/diagnosis
5.
Microorganisms ; 11(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764089

ABSTRACT

Pathogenic bacteria form biofilms during infection, and polymicrobial biofilms are the most frequent manifestation. Biofilm attachment, maturation, and/or antibiotic sensitivity are mainly evaluated with microtiter plate assays, in which bacteria are stained to enable the quantification of the biomass by optical absorbance or fluorescence emission. However, using these methods to distinguish different species in dual-species or polymicrobial biofilms is currently impossible. Colony-forming unit counts from homogenized dual-species biofilms on selective agar medium allow species differentiation but are time-consuming for a high-throughput screening. Thus, reliable, feasible, and fast methods are urgently needed to study the behavior of polymicrobial and dual-species communities. This study shows that Pseudomonas aeruginosa and Burkholderia cenocepacia strains expressing specific fluorescent or bioluminescent proteins permit the more efficient study of dual-species biofilms compared to other methods that rely on measuring the total biomass. Combining fluorescence and bioluminescence measurements allows an independent analysis of the different microbial species within the biofilm, indicating the degree of presence of each one over time during a dual-species biofilm growth. The quantitative strategies developed in this work are reproducible and recommended for dual-species biofilm studies with high-throughput microtiter plate approaches using strains that can constitutively express fluorescent or bioluminescent proteins.

6.
Int J Mol Sci ; 23(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36362396

ABSTRACT

The immunomodulatory potential of mycobacteria to be used for therapeutic purposes varies by species and culture conditions and is closely related to mycobacterial lipid composition. Although the lipids present in the mycobacterial cell wall are relevant, lipids are mainly stored in intracellular lipid inclusions (ILIs), which have emerged as a crucial structure in understanding mycobacteria-host interaction. Little is known about ILI ultrastructure, production, and composition in nonpathogenic species. In this study, we compared the lipid profiles of the nonpathogenic immunomodulatory agent Mycobacterium brumae during pellicle maturation under different culture conditions with qualitative and quantitative approaches by using high-resolution imaging and biochemical and composition analyses to understand ILI dynamics. The results showed wax esters, mainly in early stages of development, and acylglycerols in mature ILI composition, revealing changes in dynamics, amount, and morphometry, depending on pellicle maturation and the culture media used. Low-glycerol cultures induced ILIs with lower molecular weights which were smaller in size in comparison with the ILIs produced in glycerol-enriched media. The data also indicate the simple metabolic plasticity of lipid synthesis in M. brumae, as well as its high versatility in generating different lipid profiles. These findings provide an interesting way to enhance the production of key lipid structures via the simple modulation of cell culture conditions.


Subject(s)
Glycerol , Mycobacterium , Glycerol/pharmacology , Inclusion Bodies/chemistry , Lipids/analysis
7.
Front Immunol ; 13: 993401, 2022.
Article in English | MEDLINE | ID: mdl-36304456

ABSTRACT

Intravesical BCG instillation after bladder tumor resection is the standard treatment for non-muscle invasive bladder cancer; however, it is not always effective and frequently has undesirable side effects. Therefore, new strategies that improve the clinical management of patients are urgently needed. This study aimed to comprehensively evaluate the bladder tumor immune microenvironment profile after intravesical treatment with a panel of mycobacteria with variation in their cell envelope composition and its impact on survival using an orthotopic murine model to identify more effective and safer therapeutic strategies. tumor-bearing mice were intravesically treated with a panel of BCG and M. brumae cultured under different conditions. Untreated tumor-bearing mice and healthy mice were also included as controls. After mycobacterial treatments, the infiltrating immune cell populations in the bladder were analysed by flow cytometry. We provide evidence that mycobacterial treatment triggered a strong immune infiltration into the bladder, with BCG inducing higher global absolute infiltration than M. brumae. The induced global immune microenvironment was strikingly different between the two mycobacterial species, affecting both innate and adaptive immunity. Compared with M. brumae, BCG treated mice exhibited a more robust infiltration of CD4+ and CD8+ T-cells skewed toward an effector memory phenotype, with higher frequencies of NKT cells, neutrophils/gMDSCs and monocytes, especially the inflammatory subset, and higher CD4+ TEM/CD4+ Treg and CD8+ TEM/CD4+ Treg ratios. Conversely, M. brumae treatment triggered higher proportions of total activated immune cells and activated CD4+ and CD8+ TEM cells and lower ratios of CD4+ TEM cells/CD4+ Tregs, CD8+ TEM cells/CD4+ Tregs and inflammatory/reparative monocytes. Notably, the mycobacterial cell envelope composition in M. brumae had a strong impact on the immune microenvironment, shaping the B and myeloid cell compartment and T-cell maturation profile and thus improving survival. Overall, we demonstrate that the bladder immune microenvironment induced by mycobacterial treatment is species specific and shaped by mycobacterial cell envelope composition. Therefore, the global bladder immune microenvironment can be remodelled, improving the quality of infiltrating immune cells, the balance between inflammatory and regulatory/suppressive responses and increasing survival.


Subject(s)
Mycobacterium , Urinary Bladder Neoplasms , Mice , Animals , Urinary Bladder , Urinary Bladder Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , BCG Vaccine/therapeutic use , Tumor Microenvironment
8.
Oncoimmunology ; 11(1): 2051845, 2022.
Article in English | MEDLINE | ID: mdl-35355681

ABSTRACT

The mechanism of action of intravesical Mycobacterium bovis BCG immunotherapy treatment for bladder cancer is not completely known, leading to misinterpretation of BCG-unresponsive patients, who have scarce further therapeutic options. BCG is grown under diverse culture conditions worldwide, which can impact the antitumor effect of BCG strains and could be a key parameter of treatment success. Here, BCG and the nonpathogenic Mycobacterium brumae were grown in four culture media currently used by research laboratories and BCG manufacturers: Sauton-A60, -G15 and -G60 and Middlebrook 7H10, and used as therapies in the orthotopic murine BC model. Our data reveal that each mycobacterium requires specific culture conditions to induce an effective antitumor response. since higher survival rates of tumor-bearing mice were achieved using M. brumae-A60 and BCG-G15 than the rest of the treatments. M. brumae-A60 was the most efficacious among all tested treatments in terms of mouse survival, cytotoxic activity of splenocytes against tumor cells, higher systemic production of IL-17 and IFN-É£, and bladder infiltration of selected immune cells such as ILCs and CD4TEM. BCG-G15 triggered an antitumor activity based on a massive infiltration of immune cells, mainly CD3+ (CD4+ and CD8+) T cells, together with high systemic IFN-É£ release. Finally, a reduced variety of lipids was strikingly observed in the outermost layer of M. brumae-A60 and BCG-G15 compared to the rest of the cultures, suggesting an influence on the antitumor immune response triggered. These findings contribute to understand how mycobacteria create an adequate niche to help the host subvert immunosuppressive tumor actions.


Subject(s)
Mycobacterium bovis , Urinary Bladder Neoplasms , Animals , Humans , Immunotherapy , Interleukin-17 , Mice , Urinary Bladder , Urinary Bladder Neoplasms/drug therapy
9.
Front Microbiol ; 13: 982679, 2022.
Article in English | MEDLINE | ID: mdl-36687580

ABSTRACT

Mycobacterium brumae is a rapid-growing, non-pathogenic Mycobacterium species, originally isolated from environmental and human samples in Barcelona, Spain. Mycobacterium brumae is not pathogenic and it's in vitro phenotype and immunogenic properties have been well characterized. However, the knowledge of its underlying genetic composition is still incomplete. In this study, we first describe the 4 Mb genome of the M. brumae type strain ATCC 51384T assembling PacBio reads, and second, we assess the low intraspecies variability by comparing the type strain with Illumina reads from three additional strains. Mycobacterium brumae genome is composed of a circular chromosome with a high GC content of 69.2% and containing 3,791 CDSs, 97 pseudogenes, one prophage and no CRISPR loci. Mycobacterium brumae has shown no pathogenic potential in in vivo experiments, and our genomic analysis confirms its phylogenetic position with other non-pathogenic and rapid growing mycobacteria. Accordingly, we determined the absence of virulence-related genes, such as ESX-1 locus and most PE/PPE genes, among others. Although the immunogenic potential of M. brumae was proved to be as high as Mycobacterium bovis BCG, the only mycobacteria licensed to treat cancer, the genomic content of M. tuberculosis T cell and B cell antigens in M. brumae genome is considerably lower than those antigens present in M. bovis BCG genome. Overall, this work provides relevant genomic data on one of the species of the mycobacterial genus with high therapeutic potential.

10.
Vaccine ; 39(50): 7332-7340, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34627626

ABSTRACT

The Mycobacterium bovis Bacillus Calmette et Guérin (BCG) vaccine was generated in 1921 with the efforts of a team of investigators, Albert Calmette and Camille Guérin, dedicated to the determination to develop a vaccine against active tuberculosis (TB) disease. Since then, BCG vaccination is used globally for protection against childhood and disseminated TB; however, its efficacy at protecting against pulmonary TB in adult and aging populations is highly variable. Due to the BCG generated immunity, this vaccine later proved to have an antitumor activity; though the standing mechanisms behind are still unclear. Recent studies indicate that both innate and adaptive cell responses may play an important role in BCG eradication and prevention of bladder cancer. Thus, cells such as natural killer (NK) cells, macrophages, dendritic cells, neutrophils but also MHC-restricted CD4 and CD8 T cells and γδ T cells may play an important role and can be one the main effectors in BCG therapy. Here, we discuss the role of BCG therapy in bladder cancer and other cancers, including current strategies and their impact on the generation and sustainability of protective antitumor immunity against bladder cancer.


Subject(s)
Mycobacterium bovis , Tuberculosis , Urinary Bladder Neoplasms , BCG Vaccine , CD8-Positive T-Lymphocytes , Child , Humans , Tuberculosis/prevention & control , Urinary Bladder Neoplasms/therapy
11.
Sensors (Basel) ; 21(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34577201

ABSTRACT

This work addresses a method that combines immunomagnetic separation (IMS) and paper-based nucleic acid immunochromatographic assay for the sensitive detection of Mycolicibacterium fortuitum (basonym Mycobacterium fortuitum) In particular, the preconcentration of the bacteria was achieved by using magnetic particles modified with an antibody specific towards mycobacteria. Following the IMS, the bacteria were lysed, and the genome was amplified by double-tagging PCR, using a set of primers specific for the 16S rRNA gene for Mycobacterium. During the amplification, the amplicons were labeled with biotin and digoxigenin tags. Moreover, a comparative study of paper-based immunochromatographic platforms, relying on vertical and lateral flow and on the use of streptavidin gold nanoparticles as a signal generating system, was also performed. The visual readout was achieved when the gold-modified amplicons were captured by the anti-DIG antibody in the test line. The analytical performance of both methods, nucleic acid vertical flow (NAVF) and nucleic acid lateral flow (NALF), is also discussed. Although NALF showed lower limit of detections (LODs), both NALF and NAVF combined with IMS were able to detect the required LOD in hemodialysis water, becoming two promising and useful techniques for the rapid screening of water supplies in hemodialysis centers, to prevent the exposure of immunosuppressed patients to contaminated sources.


Subject(s)
Metal Nanoparticles , Mycobacterium , Gold , Humans , Immunoassay , Immunomagnetic Separation , Mycobacterium/genetics , RNA, Ribosomal, 16S/genetics
12.
Sci Robot ; 6(52)2021 03 17.
Article in English | MEDLINE | ID: mdl-34043548

ABSTRACT

Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either 124I on gold nanoparticles or 18F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors' self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications.


Subject(s)
Metal Nanoparticles , Robotics/instrumentation , Urinary Bladder/diagnostic imaging , Administration, Intravesical , Animals , Equipment Design , Female , Gold , Mice , Mice, Inbred C57BL , Motion , Phantoms, Imaging , Positron Emission Tomography Computed Tomography , Precision Medicine , Translational Research, Biomedical , Urease
13.
J Vis Exp ; (170)2021 04 16.
Article in English | MEDLINE | ID: mdl-33938877

ABSTRACT

Mycobacteria species can differ from one another in the rate of growth, presence of pigmentation, the colony morphology displayed on solid media, as well as other phenotypic characteristics. However, they all have in common the most relevant character of mycobacteria: its unique and highly hydrophobic cell wall. Mycobacteria species contain a membrane-covalent linked complex that includes arabinogalactan, peptidoglycan, and long-chains of mycolic acids with types that differ between mycobacteria species. Additionally, mycobacteria can also produce lipids that are located, non-covalently linked, on their cell surfaces, such as phthiocerol dimycocerosates (PDIM), phenolic glycolipids (PGL), glycopeptidolipids (GPL), acyltrehaloses (AT), or phosphatidil-inositol mannosides (PIM), among others. Some of them are considered virulence factors in pathogenic mycobacteria, or critical antigenic lipids in host-mycobacteria interaction. For these reasons, there is a significant interest in the study of mycobacterial lipids due to their application in several fields, from understanding their role in the pathogenicity of mycobacteria infections, to a possible implication as immunomodulatory agents for the treatment of infectious diseases and other pathologies such as cancer. Here, a simple approach to extract and analyze the total lipid content and the mycolic acid composition of mycobacteria cells grown in a solid medium using mixtures of organic solvents is presented. Once the lipid extracts are obtained, thin-layer chromatography (TLC) is performed to monitor the extracted compounds. The example experiment is performed with four different mycobacteria: the environmental fast-growing Mycolicibacterium brumae and Mycolicibacterium fortuitum, the attenuated slow-growing Mycobacterium bovis bacillus Calmette-Guérin (BCG), and the opportunistic pathogen fast-growing Mycobacterium abscessus, demonstrating that methods shown in the present protocol can be used to a wide range of mycobacteria.


Subject(s)
Lipids/analysis , Mycobacterium , Chromatography, Thin Layer
14.
Front Immunol ; 12: 622995, 2021.
Article in English | MEDLINE | ID: mdl-33708215

ABSTRACT

Natural Killer cell receptors allow this heterogeneous immune population to efficiently fight both tumors and infection, so their use as immunotherapy agents is an active field of research. Cytokine activation, particularly by myeloid cell-derived IL15, can induce potent NK anti-tumor responses. While studying the mechanism of action of intravesical instillations of Bacille Calmette-Guérin (BCG) as therapy for patients with high risk non-muscle invasive bladder cancer, we showed that BCG can activate a cytotoxic CD56bright NK cell population which efficiently recognized bladder cancer cells. This pioneer immunotherapy provides an invaluable model to understand the role of different immune populations in tumor elimination. However, during the propagation of BCG worldwide a large number of genetically diverse BCG substrains developed. Here, we investigated the capacity of different BCG substrains to promote NK cell activation and confirmed that they were able to activate lymphocytes. Tice, Connaught and Moreau were the substrains with a stronger NK activation effect as measured by CD56 upregulation. Surprisingly, dead mycobacteria also stimulated PBMC cultures and we further demonstrate here that subcellular fractions of BCG-Tice, in the absence of live mycobacteria, could also induce an NK cell response. Lipids from BCG-Tice, but not from Mycobacterium bovis, stimulated NK cell activation and degranulation, whereas the aqueous fraction of either bacteria did not activate lymphocytes. However, delipidated BCG-Tice bacteria were able to activate effector cells (CD3+CD56+ and NK, CD3-CD56+). These data demonstrate that different components of mycobacteria can stimulate different immune subpopulations resulting in phenotypes suitable for cancer elimination.


Subject(s)
Antineoplastic Agents/immunology , BCG Vaccine/immunology , Cell Degranulation , Immunotherapy , Killer Cells, Natural/immunology , Lymphocyte Activation , Mycobacterium bovis/immunology , Urinary Bladder Neoplasms/therapy , BCG Vaccine/genetics , CD3 Complex/metabolism , CD56 Antigen/metabolism , Cell Proliferation , Coculture Techniques , Humans , K562 Cells , Killer Cells, Natural/metabolism , Mycobacterium bovis/genetics , Tumor Microenvironment , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/metabolism , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology
15.
N Biotechnol ; 63: 10-18, 2021 Jul 25.
Article in English | MEDLINE | ID: mdl-33636348

ABSTRACT

Electroporation is the most widely used and efficient method to transform mycobacteria. Through this technique, fast- and slow-growing mycobacteria with smooth and rough morphotypes have been successfully transformed. However, transformation efficiencies differ widely between species and strains. In this study, the smooth and rough morphotypes of Mycobacteroides abscessus and Mycolicibacterium brumae were used to improve current electroporation procedures for fast-growing rough mycobacteria. The focus was on minimizing three well-known and challenging limitations: the mycobacterial restriction-modification systems, which degrade foreign DNA; clump formation of electrocompetent cells before electroporation; and electrical discharges during pulse delivery, which were reduced by using salt-free DNA solution. Herein, different strategies are presented that successfully address these three limitations and clearly improve the electroporation efficiencies over the current procedures. The results demonstrated that combining the developed strategies during electroporation is highly recommended for the transformation of fast-growing rough mycobacteria.


Subject(s)
Electroporation , Mycobacterium/growth & development
16.
J Extracell Vesicles ; 10(3): e12046, 2021 01.
Article in English | MEDLINE | ID: mdl-33489013

ABSTRACT

The identification of individuals with null alleles enables studying how the loss of gene function affects infection. We previously described a non-functional variant in SIGLEC1, which encodes the myeloid-cell receptor Siglec-1/CD169 implicated in HIV-1 cell-to-cell transmission. Here we report a significant association between the SIGLEC1 null variant and extrapulmonary dissemination of Mycobacterium tuberculosis (Mtb) in two clinical cohorts comprising 6,256 individuals. Local spread of bacteria within the lung is apparent in Mtb-infected Siglec-1 knockout mice which, despite having similar bacterial load, developed more extensive lesions compared to wild type mice. We find that Siglec-1 is necessary to induce antigen presentation through extracellular vesicle uptake. We postulate that lack of Siglec-1 delays the onset of protective immunity against Mtb by limiting antigen exchange via extracellular vesicles, allowing for an early local spread of mycobacteria that increases the risk for extrapulmonary dissemination.


Subject(s)
Extracellular Vesicles/immunology , Mycobacterium tuberculosis/immunology , Sialic Acid Binding Ig-like Lectin 1/genetics , Animals , Antigen Presentation/immunology , Humans , Immunity/genetics , Lung/microbiology , Lung/pathology , Mice , Mycobacterium tuberculosis/pathogenicity , Sialic Acid Binding Ig-like Lectin 1/immunology , Tuberculosis, Lymph Node/microbiology , Tuberculosis, Lymph Node/pathology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
17.
Vaccines (Basel) ; 10(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35062701

ABSTRACT

Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.

18.
Cancers (Basel) ; 12(7)2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32635668

ABSTRACT

The arsenal against different types of cancers has increased impressively in the last decade. The detailed knowledge of the tumor microenvironment enables it to be manipulated in order to help the immune system fight against tumor cells by using specific checkpoint inhibitors, cell-based treatments, targeted antibodies, and immune stimulants. In fact, it is widely known that the first immunotherapeutic tools as immune stimulants for cancer treatment were bacteria and still are; specifically, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) continues to be the treatment of choice for preventing cancer recurrence and progression in non-invasive bladder cancer. BCG and also other mycobacteria or their components are currently under study for the immunotherapeutic treatment of different malignancies. This review focuses on the preclinical and clinical assays using mycobacteria to treat non-urological cancers, providing a wide knowledge of the beneficial applications of these microorganisms to manipulate the tumor microenvironment aiming at tumor clearance.

19.
Microorganisms ; 8(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423030

ABSTRACT

Mycobacterium bovis bacillus Calmette-Guérin (BCG) remains the first treatment option for non-muscle-invasive bladder cancer (BC) patients. In research laboratories, M. bovis BCG is mainly grown in commercially available media supplemented with animal-derived agents that favor its growth, while biomass production for patient treatment is performed in Sauton medium which lacks animal-derived components. However, there is not a standardized formulation of Sauton medium, which could affect mycobacterial characteristics. Here, the impact of culture composition on the immunomodulatory and antitumor capacity of M. bovis BCG and Mycolicibacterium brumae, recently described as efficacious for BC treatment, has been addressed. Both mycobacteria grown in Middlebrook and different Sauton formulations, differing in the source of nitrogen and amount of carbon source, were studied. Our results indicate the relevance of culture medium composition on the antitumor effect triggered by mycobacteria, indicating that the most productive culture medium is not necessarily the formulation that provides the most favorable immunomodulatory profile and the highest capacity to inhibit BC cell growth. Strikingly, each mycobacterial species requires a specific culture medium composition to provide the best profile as an immunotherapeutic agent for BC treatment. Our results highlight the relevance of meticulousness in mycobacteria production, providing insight into the application of these bacteria in BC research.

20.
Vaccines (Basel) ; 8(2)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344808

ABSTRACT

Intravesical Mycobacterium bovis Bacillus Calmette-Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical parameters were analyzed. Finally, histopathological alterations in mouse tissues were evaluated. Our results demonstrate the safety and non-toxic profile of M. brumae. Differences were observed in the biochemical, hematological and histopathological analysis between M. brumae and BCG-infected mice, as well as survival curves rates and colony forming units (CFU) counts in both animal models. M. brumae constitutes a safe therapeutic biological agent, overcoming the safety and toxicity disadvantages presented by BCG in both mice and G. mellonella animal models.

SELECTION OF CITATIONS
SEARCH DETAIL
...