Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
J Biol Chem ; 300(5): 107207, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38522514

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons. Neuronal superoxide dismutase-1 (SOD1) inclusion bodies are characteristic of familial ALS with SOD1 mutations, while a hallmark of sporadic ALS is inclusions containing aggregated WT TAR DNA-binding protein 43 (TDP-43). We show here that co-expression of mutant or WT TDP-43 with SOD1 leads to misfolding of endogenous SOD1 and aggregation of SOD1 reporter protein SOD1G85R-GFP in human cell cultures and promotes synergistic axonopathy in zebrafish. Intriguingly, this pathological interaction is modulated by natively solvent-exposed tryptophans in SOD1 (tryptophan-32) and TDP-43 RNA-recognition motif RRM1 (tryptophan-172), in concert with natively sequestered TDP-43 N-terminal domain tryptophan-68. TDP-43 RRM1 intrabodies reduce WT SOD1 misfolding in human cell cultures, via blocking tryptophan-172. Tryptophan-68 becomes antibody-accessible in aggregated TDP-43 in sporadic ALS motor neurons and cell culture. 5-fluorouridine inhibits TDP-43-induced G85R-GFP SOD1 aggregation in human cell cultures and ameliorates axonopathy in zebrafish, via its interaction with SOD1 tryptophan-32. Collectively, our results establish a novel and potentially druggable tryptophan-mediated mechanism whereby two principal ALS disease effector proteins might directly interact in disease.

2.
Acta Neuropathol Commun ; 11(1): 182, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974279

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative diseases that belong to a common disease spectrum based on overlapping clinical, pathological and genetic evidence. Early pathological changes to the morphology and synapses of affected neuron populations in ALS/FTD suggest a common underlying mechanism of disease that requires further investigation. Fused in sarcoma (FUS) is a DNA/RNA-binding protein with known genetic and pathological links to ALS/FTD. Expression of ALS-linked FUS mutants in mice causes cognitive and motor defects, which correlate with loss of motor neuron dendritic branching and synapses, in addition to other pathological features of ALS/FTD. The role of ALS-linked FUS mutants in causing ALS/FTD-associated disease phenotypes is well established, but there are significant gaps in our understanding of the cell-autonomous role of FUS in promoting structural changes to motor neurons, and how these changes relate to disease progression. Here we generated a neuron-specific FUS-transgenic mouse model expressing the ALS-linked human FUSR521G variant, hFUSR521G/Syn1, to investigate the cell-autonomous role of FUSR521G in causing loss of dendritic branching and synapses of motor neurons, and to understand how these changes relate to ALS-associated phenotypes. Longitudinal analysis of mice revealed that cognitive impairments in juvenile hFUSR521G/Syn1 mice coincide with reduced dendritic branching of cortical motor neurons in the absence of motor impairments or changes in the neuromorphology of spinal motor neurons. Motor impairments and dendritic attrition of spinal motor neurons developed later in aged hFUSR521G/Syn1 mice, along with FUS cytoplasmic mislocalisation, mitochondrial abnormalities and glial activation. Neuroinflammation promotes neuronal dysfunction and drives disease progression in ALS/FTD. The therapeutic effects of inhibiting the pro-inflammatory nuclear factor kappa B (NF-κB) pathway with an analog of Withaferin A, IMS-088, were assessed in symptomatic hFUSR521G/Syn1 mice and were found to improve cognitive and motor function, increase dendritic branches and synapses of motor neurons, and attenuate other ALS/FTD-associated pathological features. Treatment of primary cortical neurons expressing FUSR521G with IMS-088 promoted the restoration of dendritic mitochondrial numbers and mitochondrial activity to wild-type levels, suggesting that inhibition of NF-κB permits the restoration of mitochondrial stasis in our models. Collectively, this work demonstrates that FUSR521G has a cell-autonomous role in causing early pathological changes to dendritic and synaptic structures of motor neurons, and that these changes precede motor defects and other well-known pathological features of ALS/FTD. Finally, these findings provide further support that modulation of the NF-κB pathway in ALS/FTD is an important therapeutic approach to attenuate disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Aged , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/pathology , Disease Progression , Frontotemporal Dementia/pathology , Mice, Transgenic , Motor Neurons/metabolism , Mutation , NF-kappa B/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
3.
Bioanalysis ; 15(15): 927-936, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37650499

ABSTRACT

Aim: The aim of this study was to detect misfolded Cu/Zn SOD1 as a potential biomarker for amyotrophic lateral sclerosis (ALS). Materials & methods: Two ultrasensitive immunodetection assays were developed for the quantification of total and misfolded SOD1. Results: The detection of total and misfolded SOD1 was possible in human serum and cerebrospinal fluid. Total SOD1 was increased in cerebrospinal fluid from ALS patients. Misfolded SOD1 had low and variable expression in both control and ALS patient samples. Conclusion: These assays hold promise for improving our understanding of ALS and its detection, and could lead to more effective treatment options in the future. Further studies in larger cohorts are now required.


Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with protein misfolding, including Cu/Zn SOD1. In this study, we set up a method for detecting normal and pathological misfolded SOD1 in human serum and cerebrospinal fluid. SOD1 was increased in ALS and misfolded SOD1 had low and variable expression in both control and ALS. These assays holds promise for improving our understanding of ALS and its diagnosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1 , Biological Assay , Immunoassay , Molecular Conformation
4.
Brain ; 146(9): 3624-3633, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37410912

ABSTRACT

The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Humans , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , TDP-43 Proteinopathies/pathology , Frontotemporal Lobar Degeneration/pathology , Centrosome/metabolism , Centrosome/pathology
5.
Neurotherapeutics ; 20(4): 1215-1228, 2023 07.
Article in English | MEDLINE | ID: mdl-37268847

ABSTRACT

Giant axonal neuropathy (GAN) is a disease caused by a deficiency of gigaxonin, a mediator of the degradation of intermediate filament (IF) proteins. A lack of gigaxonin alters the turnover of IF proteins, provoking accumulation and disorganization of neurofilaments (NFs) in neurons, a hallmark of the disease. However, the effects of IF disorganization on neuronal function remain unknown. Here, we report that cultured embryonic dorsal root ganglia (DRG) neurons derived from Gan-/- mice exhibit accumulations of IF proteins and defects in fast axonal transport of organelles. Kymographs generated by time-lapse microscopy revealed substantial reduction of anterograde movements of mitochondria and lysosomes in axons of Gan-/- DRG neurons. Treatment of Gan-/- DRG neurons with Tubastatin A (TubA) increased the levels of acetylated tubulin and it restored the normal axonal transport of these organelles. Furthermore, we tested the effects of TubA in a new mouse model of GAN consisting of Gan-/- mice with overexpression of peripherin (Prph) transgene. Treatment of 12-month-old Gan-/-;TgPer mice with TubA led to a slight amelioration of motor function, especially a significant improvement of gait performance as measured by footprint analyses. Moreover, TubA treatment reduced the abnormal accumulations of Prph and NF proteins in spinal neurons and it boosted the levels of Prph transported into peripheral nerve axons. These results suggest that drug inhibitors of histone deacetylase aiming to enhance axonal transport should be considered as a potential treatment for GAN disease.


Subject(s)
Cytoskeletal Proteins , Giant Axonal Neuropathy , Mice , Animals , Cytoskeletal Proteins/metabolism , Axonal Transport , Intermediate Filament Proteins/metabolism , Axons/metabolism , Giant Axonal Neuropathy/metabolism , Giant Axonal Neuropathy/therapy , Ganglia, Spinal/metabolism
6.
Biomedicines ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37371694

ABSTRACT

Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.

7.
J Neurosci ; 43(22): 4174-4189, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37137704

ABSTRACT

Research on pathogenic mechanisms underlying giant axonal neuropathy (GAN), a disease caused by a deficiency of gigaxonin, has been hindered by the lack of appropriate animal models exhibiting substantial symptoms and large neurofilament (NF) swellings, a hallmark of the human disease. It is well established that intermediate filament (IF) proteins are substrates for gigaxonin-mediated degradation. However, it has remained unknown to what extent NF accumulations contribute to GAN pathogenesis. Here, we report the generation of a new mouse model of GAN that is based on crossing transgenic mice overexpressing peripherin (Prph) with mice knockout for Gan The Gan-/-;TgPer mice developed early onset sensory-motor deficits along with IF accumulations made up of NF proteins and of Prph, causing swelling of spinal neurons at a young age. Abundant inclusion bodies composed of disorganized IFs were also detected in the brain of Gan-/-;TgPer mice. At 12 months of age, the Gan-/-;TgPer mice exhibited cognitive deficits as well as severe sensory and motor defects. The disease was associated with neuroinflammation and substantial loss of cortical neurons and spinal neurons. Giant axons (≥160 µm2) enlarged by disorganized IFs, a hallmark of GAN disease, were also detected in dorsal and ventral roots of the Gan-/-;TgPer mice. These results, obtained with both sexes, support the view that the disorganization of IFs can drive some neurodegenerative changes caused by gigaxonin deficiency. This new mouse model should be useful to investigate the pathogenic changes associated with GAN disease and for drug testing.SIGNIFICANCE STATEMENT Research on pathogenic mechanism and treatment of GAN has been hampered by the lack of animal models exhibiting overt phenotypes and substantial neurofilament disorganization, a hallmark of the disease. Moreover, it remains unknown whether neurologic defects associated with gigaxonin deficiency in GAN are because of neurofilament disorganization as gigaxonin may also act on other protein substrates to mediate their degradation. This study reports the generation of a new mouse model of GAN based on overexpression of Prph in the context of targeted disruption of gigaxonin gene. The results support the view that neurofilament disorganization may contribute to neurodegenerative changes in GAN disease. The Gan-/-;TgPer mice provide a unique animal model of GAN for drug testing.


Subject(s)
Giant Axonal Neuropathy , Male , Female , Mice , Humans , Animals , Giant Axonal Neuropathy/genetics , Giant Axonal Neuropathy/pathology , Giant Axonal Neuropathy/therapy , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Cytoskeletal Proteins/genetics , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Phenotype , Mice, Transgenic
8.
eNeuro ; 10(3)2023 03.
Article in English | MEDLINE | ID: mdl-36882311

ABSTRACT

Studies in cultured neurons have shown that neurofilaments are cargoes of axonal transport that move rapidly but intermittently along microtubule tracks. However, the extent to which axonal neurofilaments move in vivo has been controversial. Some researchers have proposed that most axonally transported neurofilaments are deposited into a persistently stationary network and that only a small proportion of axonal neurofilaments are transported in mature axons. Here we use the fluorescence photoactivation pulse-escape technique to test this hypothesis in intact peripheral nerves of adult male hThy1-paGFP-NFM mice, which express low levels of mouse neurofilament protein M tagged with photoactivatable GFP. Neurofilaments were photoactivated in short segments of large, myelinated axons, and the mobility of these fluorescently tagged polymers was determined by analyzing the kinetics of their departure. Our results show that >80% of the fluorescence departed the window within 3 h after activation, indicating a highly mobile neurofilament population. The movement was blocked by glycolytic inhibitors, confirming that it was an active transport process. Thus, we find no evidence for a substantial stationary neurofilament population. By extrapolation of the decay kinetics, we predict that 99% of the neurofilaments would have exited the activation window after 10 h. These data support a dynamic view of the neuronal cytoskeleton in which neurofilaments cycle repeatedly between moving and pausing states throughout their journey along the axon, even in mature myelinated axons. The filaments spend a large proportion of their time pausing, but on a timescale of hours, most of them move.


Subject(s)
Axons , Intermediate Filaments , Mice , Male , Animals , Intermediate Filaments/metabolism , Axons/metabolism , Neurons/physiology , Axonal Transport/physiology , Cytoskeleton/metabolism
9.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982140

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a clinically highly heterogeneous disease with a survival rate ranging from months to decades. Evidence suggests that a systemic deregulation of immune response may play a role and affect disease progression. Here, we measured 62 different immune/metabolic mediators in plasma of sporadic ALS (sALS) patients. We show that, at the protein level, the majority of immune mediators including a metabolic sensor, leptin, were significantly decreased in the plasma of sALS patients and in two animal models of the disease. Next, we found that a subset of patients with rapidly progressing ALS develop a distinct plasma assess immune-metabolic molecular signature characterized by a differential increase in soluble tumor necrosis factor receptor II (sTNF-RII) and chemokine (C-C motif) ligand 16 (CCL16) and further decrease in the levels of leptin, mostly dysregulated in male patients. Consistent with in vivo findings, exposure of human adipocytes to sALS plasma and/or sTNF-RII alone, induced a significant deregulation in leptin production/homeostasis and was associated with a robust increase in AMP-activated protein kinase (AMPK) phosphorylation. Conversely, treatment with an AMPK inhibitor restored leptin production in human adipocytes. Together, this study provides evidence of a distinct plasma immune profile in sALS which affects adipocyte function and leptin signaling. Furthermore, our results suggest that targeting the sTNF-RII/AMPK/leptin pathway in adipocytes may help restore assess immune-metabolic homeostasis in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Leptin , Animals , Humans , Male , AMP-Activated Protein Kinases , Receptors, Tumor Necrosis Factor , Homeostasis
10.
Front Neurol ; 13: 962227, 2022.
Article in English | MEDLINE | ID: mdl-36226085

ABSTRACT

In the post-natal mouse cochlea, type II spiral ganglion neurons (SGNs) innervating the electromotile outer hair cells (OHCs) of the 'cochlear amplifier' selectively express the type III intermediate filament peripherin gene (Prph). Immunolabeling showed that Prph knockout (KO) mice exhibited disruption of this (outer spiral bundle) afferent innervation, while the radial fiber (type I SGN) innervation of the inner hair cells (~95% of the SGN population) was retained. Functionality of the medial olivocochlear (MOC) efferent innervation of the OHCs was confirmed in the PrphKO, based on suppression of distortion product otoacoustic emissions (DPOAEs) via direct electrical stimulation. However, "contralateral suppression" of the MOC reflex neural circuit, evident as a rapid reduction in cubic DPOAE when noise is presented to the opposite ear in wildtype mice, was substantially disrupted in the PrphKO. Auditory brainstem response (ABR) measurements demonstrated that hearing sensitivity (thresholds and growth-functions) were indistinguishable between wildtype and PrphKO mice. Despite this comparability in sound transduction and strength of the afferent signal to the central auditory pathways, high-intensity, broadband noise exposure (108 dB SPL, 1 h) produced permanent high frequency hearing loss (24-32 kHz) in PrphKO mice but not the wildtype mice, consistent with the attenuated contralateral suppression of the PrphKO. These data support the postulate that auditory neurons expressing Prph contribute to the sensory arm of the otoprotective MOC feedback circuit.

11.
eNeuro ; 9(4)2022.
Article in English | MEDLINE | ID: mdl-35896389

ABSTRACT

Neurofilaments are abundant space-filling cytoskeletal polymers that are transported into and along axons. During postnatal development, these polymers accumulate in myelinated axons causing an expansion of axon caliber, which is necessary for rapid electrical transmission. Studies on cultured nerve cells have shown that axonal neurofilaments move rapidly and intermittently along microtubule tracks in both anterograde and retrograde directions. However, it is unclear whether neurofilament transport is also bidirectional in vivo Here, we describe a pulse-spread fluorescence photoactivation method to address this in peripheral nerves dissected from hThy1-paGFP-NFM transgenic mice, which express a photoactivatable fluorescent neurofilament protein. Neurofilaments were photoactivated in short segments of myelinated axons in tibial nerves at 2, 4, 8, and 16 weeks of age. The proximal and distal spread of the fluorescence due to the movement of the fluorescent neurofilaments was measured over time. We show that the directional bias and velocity of neurofilament transport can be calculated from these measurements. The directional bias was ∼60% anterograde and 40% retrograde and did not change significantly with age or distance along the nerve. The net velocity decreased with age and distance along the nerve, which is consistent with previous studies using radioisotopic pulse labeling. This decrease in velocity was caused by a decrease in both anterograde and retrograde movement. Thus, neurofilament transport is bidirectional in vivo, with a significant fraction of the filaments moving retrogradely in both juvenile and adult mice.


Subject(s)
Axonal Transport , Intermediate Filaments , Animals , Axonal Transport/physiology , Axons/metabolism , Intermediate Filaments/metabolism , Mice , Neurofilament Proteins/metabolism , Neurons/metabolism
12.
Neurotherapeutics ; 18(2): 1095-1112, 2021 04.
Article in English | MEDLINE | ID: mdl-33786804

ABSTRACT

Vascular dementia is one of the most common forms of dementia in aging population. However, the molecular mechanisms involved in development of disease and the link between the cerebrovascular pathology and the cognitive impairments remain elusive. Currently, one common and/or converging neuropathological pathway leading to dementia is the mislocalization and altered functionality of the TDP-43. We recently demonstrated that brain ischemia triggers an age-dependent deregulation of TDP-43 that was associated with exacerbated neurodegeneration. Here, we report that chronic cerebral hypoperfusion in mice (CCH) produced by unilateral common carotid artery occlusion induces cytoplasmic mislocalization of TDP-43 and formation of insoluble phosho-TDP-43 aggregates reminiscent of pathological changes detected in cortical neurons of human brain samples from patients suffering from vascular dementia. Moreover, the CCH in mice caused chronic activation of microglia and innate immune response, development of cognitive deficits, and motor impairments. Oral administration of a novel analog (IMS-088) of withaferin A, an antagonist of nuclear factor-κB essential modulator (NEMO), led to mitigation of TDP-43 pathology, enhancement of autophagy, and amelioration of cognitive/motor deficits in CCH mice. Taken together, our results suggest that targeting TDP-43 pathogenic inclusions may have a disease-modifying effect in dementia caused by chronic brain hypoperfusion.


Subject(s)
Cerebrovascular Circulation/drug effects , Cerebrovascular Disorders/genetics , Cognitive Dysfunction/genetics , DNA-Binding Proteins/genetics , Motor Disorders/genetics , TDP-43 Proteinopathies/genetics , Animals , Cerebrovascular Circulation/physiology , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/pathology , Chronic Disease , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Drug Delivery Systems/methods , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Disorders/drug therapy , Motor Disorders/pathology , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/pathology , Withanolides/administration & dosage , Withanolides/chemistry
14.
Mol Neurodegener ; 16(1): 1, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413517

ABSTRACT

BACKGROUND: TDP-43 proteinopathy is a pathological hallmark of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). So far, there is no therapy available for these neurodegenerative diseases. In addition, the impact of TDP-43 proteinopathy on neuronal translational profile also remains unknown. METHODS: Biochemical, immunohistology and assay-based studies were done with cell cultures and transgenic mice models. We also used Ribotag with microarray and proteomic analysis to determine the neuronal translational profile in the mice model of ALS/FTD. RESULTS: Here, we report that oral administration of a novel analog (IMS-088) of withaferin-A, an antagonist of nuclear factor kappa-B (NF-ĸB) essential modulator (NEMO), induced autophagy and reduced TDP-43 proteinopathy in the brain and spinal cord of transgenic mice expressing human TDP-43 mutants, models of ALS/FTD. Treatment with IMS-088 ameliorated cognitive impairment, reduced gliosis in the brain of ALS/FTD mouse models. With the Ribotrap method, we investigated the impact of TDP-43 proteinopathy and IMS-088 treatment on the translation profile of neurons of one-year old hTDP-43A315T mice. TDP-43 proteinopathy caused translational dysregulation of specific mRNAs including translational suppression of neurofilament mRNAs resulting in 3 to 4-fold decrease in levels type IV neurofilament proteins. Oral administration of IMS-088 rescued the translational defects associated with TDP-43 proteinopathy and restored the synthesis of neurofilament proteins, which are essential for axon integrity and synaptic function. CONCLUSIONS: Our study revealed that induction of autophagy reduces TDP-43 pathology and ameliorates the translational defect seen in mice models of ALS/FTD. Based on these results, we suggest IMS-088 and perhaps other inducers of autophagy should be considered as potential therapeutics for neurodegenerative disorders with TDP-43 proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Autophagy/physiology , Frontotemporal Dementia/metabolism , RNA, Messenger/metabolism , TDP-43 Proteinopathies/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/metabolism , Disease Models, Animal , Frontotemporal Dementia/pathology , Humans , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Mice , Neurons/metabolism , Spinal Cord/metabolism
15.
Neurotherapeutics ; 18(1): 286-296, 2021 01.
Article in English | MEDLINE | ID: mdl-33078279

ABSTRACT

Withaferin-A, an active withanolide derived from the medicinal herbal plant Withania somnifera induces autophagy, reduces TDP-43 proteinopathy, and improves cognitive function in transgenic mice expressing mutant TDP-43 modelling FTLD. TDP-43 is a nuclear DNA/RNA-binding protein with cellular functions in RNA transcription and splicing. Abnormal cytoplasmic aggregates of TDP-43 occur in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). To date, no effective treatment is available for TDP-43 proteinopathies. Here, we tested the effects of withaferin-A (WFA), an active withanolide extracted from the medicinal herbal plant Withania somnifera, in a transgenic mouse model of FTLD expressing a genomic fragment encoding mutant TDP-43G348C. WFA treatment ameliorated the cognitive performance of the TDP-43G348C mice, and it reduced NF-κB activity and neuroinflammation in the brain. WFA alleviated TDP-43 pathology while it boosted the levels of the autophagic marker LC3BII in the brain. These data suggest that WFA and perhaps other autophagy inducers should be considered as potential therapy for neurodegenerative diseases with TDP-43 pathology.


Subject(s)
Cognition/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Frontotemporal Lobar Degeneration/drug therapy , Withanolides/therapeutic use , Animals , Avoidance Learning/drug effects , Blotting, Western , Brain/drug effects , Brain/metabolism , Cells, Cultured , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Fluorescent Antibody Technique , Male , Mice , Mice, Transgenic , NF-kappa B/metabolism , Signal Transduction/drug effects
16.
JCI Insight ; 5(21)2020 11 05.
Article in English | MEDLINE | ID: mdl-33021970

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), 2 incurable neurodegenerative disorders, share the same pathological hallmark named TDP43 (TAR DNA binding protein 43) proteinopathy. This event is characterized by a consistent cytoplasmic mislocalization and aggregation of the protein TDP43, which loses its physiological properties, leading neurons to death. Antibody-based approaches are now emerging interventions in the field of neurodegenerative disorders. Here, we tested the target specificity, in vivo distribution, and therapeutic efficacy of a monoclonal full-length antibody, named E6, in TDP43-related conditions. We observed that the antibody recognizes specifically the cytoplasmic fraction of TDP43. We demonstrated its ability in targeting large neurons in the spinal cord of mice and in reducing TDP43 mislocalization and NF-κB activation. We also recognized the proteasome as well as the lysosome machineries as possible mechanisms used by the antibody to reduce TDP43 proteinopathy. To our knowledge, this is the first report showing the therapeutic efficacy and feasibility of a full-length antibody against TDP43 in reducing TDP43 proteinopathy in spinal neurons of an ALS/FTLD mouse model.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Antibodies, Monoclonal/pharmacology , DNA-Binding Proteins/immunology , Neurons/drug effects , Spinal Cord/drug effects , TDP-43 Proteinopathies/drug therapy , Aged , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Case-Control Studies , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , NF-kappa B/metabolism , Neurons/immunology , Neurons/pathology , Spinal Cord/immunology , Spinal Cord/pathology , TDP-43 Proteinopathies/immunology , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology
17.
Phys Rev Lett ; 124(19): 196601, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469540

ABSTRACT

The transport properties of MAPbI3 are analyzed within a tight-binding model. We find a strong Fröhlich interaction of electron and holes with the electrostatic potential induced by the longitudinal optical phonon modes. This potential induces a strong scattering and limits the electronic mobilities at room temperature to about 200 cm^{2}/V s. With additional extrinsic disorder, a large fraction of the electrons and holes are localized, but they can diffuse by following nearly adiabatically the evolution of the electrostatic potential. This process of diffusion, at a rate which is given by the lattice dynamics, contributes to the unique electronic properties of this material.

18.
Brain ; 143(7): 1975-1998, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32408345

ABSTRACT

Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.


Subject(s)
Biomarkers , Intermediate Filaments , Nerve Degeneration , Synapses , Animals , Humans
19.
Acta Neuropathol Commun ; 8(1): 65, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32381112

ABSTRACT

To test the hypothesis that the cerebrospinal fluid (CSF) could provide a spreading route for pathogenesis of amyotrophic lateral sclerosis (ALS), we have examined the effects of intraventricular infusion during 2 weeks of pooled CSF samples from sporadic ALS patients or control CSF samples into transgenic mice expressing human TDP43WT which do not develop pathological phenotypes. Infusion of ALS-CSF, but not of control CSF, triggered motor and cognitive dysfunction, as well as ALS-like pathological changes including TDP43 proteinopathy, neurofilament disorganization and neuroinflammation. In addition, the neuron-specific translational profiles from peptide analyses of immunoprecipitated ribosomes revealed dysregulation of multiple protein networks in response to ALS-CSF altering cytoskeletal organization, vesicle trafficking, mitochondrial function, and cell metabolism. With normal mice, similar ALS-CSF infusion induced mild motor dysfunction but without significant TDP43 pathology in spinal neurons. We conclude that the CSF from sporadic ALS contains factors that can transmit and disseminate disease including TDP43 proteinopathy into appropriate recipient animal model expressing human TDP43. These findings open new research avenues for the discovery of etiogenic factors for sporadic ALS and for the testing of drugs aiming to neutralize the ALS-CSF toxicity.


Subject(s)
Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Brain/pathology , Cerebrospinal Fluid , Aged , Animals , Female , Humans , Infusions, Intraventricular , Male , Mice , Mice, Transgenic , Middle Aged
20.
J Neurosci ; 40(26): 5137-5154, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32457070

ABSTRACT

To investigate the role of neuronal NF-κB activity in pathogenesis of amyotrophic lateral sclerosis (ALS), we generated transgenic mice with neuron-specific expression of a super-repressor form of the NF-κB inhibitor (IκBα-SR), which were then crossed with mice of both sexes, expressing ALS-linked gene mutants for TAR DNA-binding protein (TDP-43) and superoxide dismutase 1 (SOD1). Remarkably, neuronal expression of IκBα-SR transgene in mice expressing TDP-43A315T or TDP-43G348C mice led to a decrease in cytoplasmic to nuclear ratio of human TDP-43. The mitigation of TDP-43 neuropathology by IκBα-SR, which is likely due to an induction of autophagy, was associated with amelioration of cognitive and motor deficits as well as reduction of motor neuron loss and gliosis. Neuronal suppression of NF-κB activity in SOD1G93A mice also resulted in neuroprotection with reduction of misfolded SOD1 levels and significant extension of life span. The results suggest that neuronal NF-κB signaling constitutes a novel therapeutic target for ALS disease and related disorders with TDP-43 proteinopathy.SIGNIFICANCE STATEMENT This study reports that neuron-specific expression of IκB super-repressor mitigated behavioral and pathologic changes in transgenic mouse models of amyotrophic lateral sclerosis expressing mutant forms of either Tar DNA-binding protein 43 or superoxide dismutase. The results suggest that neuronal NF-κB signaling constitutes a novel therapeutic target for amyotrophic lateral sclerosis and related disorders with Tar DNA-binding protein 43 proteinopathy.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology , Animals , DNA-Binding Proteins/genetics , Female , Humans , Male , Mice , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Superoxide Dismutase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...