Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Res Vet Sci ; 151: 80-89, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35870372

ABSTRACT

Continuous Passive Motion (CPM) devices have been used to assist physicians conducting human rehabilitation; however, similar machines specific for canine rehabilitation have not been found in the reviewed literature. This research performed a physical analysis of the hind limb of dogs to design a device for implementing automated CPM exercises. The device proved to comply with the guidelines to perform CPM exercises, allowing a proper setting of parameters to generate rehabilitation routines customized for different rehabilitation requirements. Also, an electromyography acquisition module was incorporated into the system, with surface electrodes to visualize and provide feedback to the user for muscle activation. Limitations were encountered with a range of motion of 80° and an error of approximately 2% for angular position accuracy.


Subject(s)
Exercise Therapy , Motion Therapy, Continuous Passive , Animals , Dogs , Electromyography/veterinary , Exercise Therapy/veterinary , Humans , Motion Therapy, Continuous Passive/veterinary , Range of Motion, Articular/physiology
2.
Front Plant Sci ; 11: 572027, 2020.
Article in English | MEDLINE | ID: mdl-33224163

ABSTRACT

Gray leaf spot (GLS) is one of the major maize foliar diseases in sub-Saharan Africa. Resistance to GLS is controlled by multiple genes with additive effect and is influenced by both genotype and environment. The objectives of the study were to dissect the genetic architecture of GLS resistance through linkage mapping and genome-wide association study (GWAS) and assessing the potential of genomic prediction (GP). We used both biparental populations and an association mapping panel of 410 diverse tropical/subtropical inbred lines that were genotyped using genotype by sequencing. Phenotypic evaluation in two to four environments revealed significant genotypic variation and moderate to high heritability estimates ranging from 0.43 to 0.69. GLS was negatively and significantly correlated with grain yield, anthesis date, and plant height. Linkage mapping in five populations revealed 22 quantitative trait loci (QTLs) for GLS resistance. A QTL on chromosome 7 (qGLS7-105) is a major-effect QTL that explained 28.2% of phenotypic variance. Together, all the detected QTLs explained 10.50, 49.70, 23.67, 18.05, and 28.71% of phenotypic variance in doubled haploid (DH) populations 1, 2, 3, and F3 populations 4 and 5, respectively. Joint linkage association mapping across three DH populations detected 14 QTLs that individually explained 0.10-15.7% of phenotypic variance. GWAS revealed 10 significantly (p < 9.5 × 10-6) associated SNPs distributed on chromosomes 1, 2, 6, 7, and 8, which individually explained 6-8% of phenotypic variance. A set of nine candidate genes co-located or in physical proximity to the significant SNPs with roles in plant defense against pathogens were identified. GP revealed low to moderate prediction correlations of 0.39, 0.37, 0.56, 0.30, 0.29, and 0.38 for within IMAS association panel, DH pop1, DH pop2, DH pop3, F3 pop4, and F3 po5, respectively, and accuracy was increased substantially to 0.84 for prediction across three DH populations. When the diversity panel was used as training set to predict the accuracy of GLS resistance in biparental population, there was 20-50% reduction compared to prediction within populations. Overall, the study revealed that resistance to GLS is quantitative in nature and is controlled by many loci with a few major and many minor effects. The SNPs/QTLs identified by GWAS and linkage mapping can be potential targets in improving GLS resistance in breeding programs, while GP further consolidates the development of high GLS-resistant lines by incorporating most of the major- and minor-effect genes.

3.
Int J Mol Sci ; 21(18)2020 Sep 06.
Article in English | MEDLINE | ID: mdl-32899999

ABSTRACT

Common rust (CR) caused by Puccina sorghi is one of the destructive fungal foliar diseases of maize and has been reported to cause moderate to high yield losses. Providing CR resistant germplasm has the potential to increase yields. To dissect the genetic architecture of CR resistance in maize, association mapping, in conjunction with linkage mapping, joint linkage association mapping (JLAM), and genomic prediction (GP) was conducted on an association-mapping panel and five F3 biparental populations using genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs). Analysis of variance for the biparental populations and the association panel showed significant genotypic and genotype x environment (GXE) interaction variances except for GXE of Pop4. Heritability (h2) estimates were moderate with 0.37-0.45 for the individual F3 populations, 0.45 across five populations and 0.65 for the association panel. Genome-wide association study (GWAS) analyses revealed 14 significant marker-trait associations which individually explained 6-10% of the total phenotypic variances. Individual population-based linkage analysis revealed 26 QTLs associated with CR resistance and together explained 14-40% of the total phenotypic variances. Linkage mapping revealed seven QTLs in pop1, nine QTL in pop2, four QTL in pop3, five QTL in pop4, and one QTL in pop5, distributed on all chromosomes except chromosome 10. JLAM for the 921 F3 families from five populations detected 18 QTLs distributed in all chromosomes except on chromosome 8. These QTLs individually explained 0.3 to 3.1% and together explained 45% of the total phenotypic variance. Among the 18 QTL detected through JLAM, six QTLs, qCR1-78, qCR1-227, qCR3-172, qCR3-186, qCR4-171, and qCR7-137 were also detected in linkage mapping. GP within population revealed low to moderate correlations with a range from 0.19 to 0.51. Prediction correlation was high with r = 0.78 for combined analysis of the five F3 populations. Prediction of biparental populations by using association panel as training set reveals positive correlations ranging from 0.05 to 0.22, which encourages to develop an independent but related population as a training set which can be used to predict diverse but related populations. The findings of this study provide valuable information on understanding the genetic basis of CR resistance and the obtained information can be used for developing functional molecular markers for marker-assisted selection and for implementing GP to improve CR resistance in tropical maize.


Subject(s)
Disease Resistance/genetics , Plant Diseases , Puccinia , Zea mays/genetics , Zea mays/microbiology , Chromosome Mapping , Chromosomes, Plant , Computational Biology , Genetic Linkage , Genome-Wide Association Study , Genomics/methods , Genotype , Phenotype , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Puccinia/immunology , Puccinia/pathogenicity , Quantitative Trait Loci , Seeds/genetics , Seeds/microbiology , Tropical Climate , Zea mays/immunology
4.
Plants (Basel) ; 9(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276322

ABSTRACT

Prior knowledge on heterosis and quantitative genetic parameters on maize lethal necrosis (MLN) can help the breeders to develop numerous resistant or tolerant hybrids with optimum resources. Our objectives were to (1) estimate the quantitative genetic parameters for MLN disease severity, (2) investigate the efficiency of the prediction of hybrid performance based on parental per se and general combining ability (GCA) effects, and (3) examine the potential of hybrid prediction for MLN resistance or tolerance based on markers. Fifty elite maize inbred lines were selected based on their response to MLN under artificial inoculation. Crosses were made in a half diallel mating design to produce 307 F1 hybrids. All hybrids were evaluated in MLN quarantine facility in Naivasha, Kenya for two seasons under artificial inoculation. All 50 inbreds were genotyped with genotyping-by-sequencing (GBS) SNPs. The phenotypic variation was significant for all traits and the heritability was moderate to high. We observed that hybrids were superior to the mean performance of the parents for disease severity (-14.57%) and area under disease progress curve (AUDPC) (14.9%). Correlations were significant and moderate between line per se and GCA; and mean of parental value with hybrid performance for both disease severity and AUDPC value. Very low and negative correlation was observed between parental lines marker based genetic distance and heterosis. Nevertheless, the correlation of GCA effects was very high with hybrid performance which can suggests as a good predictor of MLN resistance. Genomic prediction of hybrid performance for MLN is high for both traits. We therefore conclude that there is potential for prediction of hybrid performance for MLN. Overall, the estimated quantitative genetic parameters suggest that through targeted approach, it is possible to develop outstanding lines and hybrids for MLN resistance.

5.
Genes (Basel) ; 11(1)2019 12 23.
Article in English | MEDLINE | ID: mdl-31877962

ABSTRACT

Maize lethal necrosis (MLN), caused by co-infection of maize chlorotic mottle virus and sugarcane mosaic virus, can lead up to 100% yield loss. Identification and validation of genomic regions can facilitate marker assisted breeding for resistance to MLN. Our objectives were to identify marker-trait associations using genome wide association study and assess the potential of genomic prediction for MLN resistance in a large panel of diverse maize lines. A set of 1400 diverse maize tropical inbred lines were evaluated for their response to MLN under artificial inoculation by measuring disease severity or incidence and area under disease progress curve (AUDPC). All lines were genotyped with genotyping by sequencing (GBS) SNPs. The phenotypic variation was significant for all traits and the heritability estimates were moderate to high. GWAS revealed 32 significantly associated SNPs for MLN resistance (at p < 1.0 × 10-6). For disease severity, these significantly associated SNPs individually explained 3-5% of the total phenotypic variance, whereas for AUDPC they explained 3-12% of the total proportion of phenotypic variance. Most of significant SNPs were consistent with the previous studies and assists to validate and fine map the big quantitative trait locus (QTL) regions into few markers' specific regions. A set of putative candidate genes associated with the significant markers were identified and their functions revealed to be directly or indirectly involved in plant defense responses. Genomic prediction revealed reasonable prediction accuracies. The prediction accuracies significantly increased with increasing marker densities and training population size. These results support that MLN is a complex trait controlled by few major and many minor effect genes.


Subject(s)
Disease Resistance/genetics , Seeds/genetics , Zea mays/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genome-Wide Association Study , Genomics/methods , Genotype , Phenotype , Plant Diseases/genetics , Plant Diseases/virology , Polymorphism, Single Nucleotide/genetics , Potyvirus/pathogenicity , Quantitative Trait Loci/genetics , Seeds/virology , Tombusviridae/pathogenicity , Zea mays/virology
6.
Theor Appl Genet ; 132(8): 2381-2399, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31098757

ABSTRACT

KEY MESSAGE: Analysis of the genetic architecture of MCMV and MLN resistance in maize doubled-haploid populations revealed QTLs with major effects on chromosomes 3 and 6 that were consistent across genetic backgrounds and environments. Two major-effect QTLs, qMCMV3-108/qMLN3-108 and qMCMV6-17/qMLN6-17, were identified as conferring resistance to both MCMV and MLN. Maize lethal necrosis (MLN) is a serious threat to the food security of maize-growing smallholders in sub-Saharan Africa. The ability of the maize chlorotic mottle virus (MCMV) to interact with other members of the Potyviridae causes severe yield losses in the form of MLN. The objective of the present study was to gain insights and validate the genetic architecture of resistance to MCMV and MLN in maize. We applied linkage mapping to three doubled-haploid populations and a genome-wide association study (GWAS) on 380 diverse maize lines. For all the populations, phenotypic variation for MCMV and MLN was significant, and heritability was moderate to high. Linkage mapping revealed 13 quantitative trait loci (QTLs) for MCMV resistance and 12 QTLs conferring MLN resistance. One major-effect QTL, qMCMV3-108/qMLN3-108, was consistent across populations for both MCMV and MLN resistance. Joint linkage association mapping (JLAM) revealed 18 and 21 main-effect QTLs for MCMV and MLN resistance, respectively. Another major-effect QTL, qMCMV6-17/qMLN6-17, was detected for both MCMV and MLN resistance. The GWAS revealed a total of 54 SNPs (MCMV-13 and MLN-41) significantly associated (P ≤ 5.60 × 10-05) with MCMV and MLN resistance. Most of the GWAS-identified SNPs were within or adjacent to the QTLs detected through linkage mapping. The prediction accuracy for within populations as well as the combined populations is promising; however, the accuracy was low across populations. Overall, MCMV resistance is controlled by a few major and many minor-effect loci and seems more complex than the genetic architecture for MLN resistance.


Subject(s)
Genetic Linkage , Genome, Plant , Genome-Wide Association Study , Plant Diseases/virology , Seeds/genetics , Tombusviridae/genetics , Zea mays/genetics , Zea mays/virology , Alleles , Area Under Curve , Phenotype , Plant Diseases/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Tropical Climate
7.
J Gen Mol Virol ; 9(1)2019.
Article in English | MEDLINE | ID: mdl-33381355

ABSTRACT

Maize lethal necrosis (MLN) disease is new to Africa. First report was in Kenya in 2012, since then the disease has rapidly spread to most parts of eastern and central Africa region including Tanzania, Burundi, DRC Congo, Rwanda, Uganda, Ethiopia and similar symptoms were observed in South Sudan. Elsewhere, the disease was caused by infection of Maize Chlorotic Mottle Virus (MCMV) in combination with any of the potyviruses namely; maize dwarf mosaic virus (MDMV), sugarcane mosaic virus (SCMV) and tritimovirus wheat streak mosaic virus (WSMV). In Africa, the disease occurs due to combined infections of maize by MCMV and SCMV, leading to severe yield losses. Efforts to address the disease spread have been ongoing. Serological techniques including enzyme-linked immuno-sorbent assay (ELISA), polymerase chain reaction (PCR), genome-wide association (GWAS) mapping and next generation sequencing have been effectively used to detect and characterize MLN causative pathogens. Various management strategies have been adapted to control MLN including use of resistant varieties, phytosanitary measures and better cultural practices. This review looks at the current knowledge on MLN causative viruses, genetic architecture and molecular basis underlying their synergistic interactions. Lastly, some research gaps towards MLN management will be identified. The information gathered may be useful for developing strategies towards future MLN management and maize improvement in Africa.

8.
Mol Breed ; 38(5): 66, 2018.
Article in English | MEDLINE | ID: mdl-29773962

ABSTRACT

In sub-Saharan Africa, maize is the key determinant of food security for smallholder farmers. The sudden outbreak of maize lethal necrosis (MLN) disease is seriously threatening the maize production in the region. Understanding the genetic basis of MLN resistance is crucial. In this study, we used four biparental populations applied linkage mapping and joint linkage mapping approaches to identify and validate the MLN resistance-associated genomic regions. All populations were genotyped with low to high density markers and phenotyped in multiple environments against MLN under artificial inoculation. Phenotypic variation for MLN resistance was significant and heritability was moderate to high in all four populations for both early and late stages of disease infection. Linkage mapping revealed three major quantitative trait loci (QTL) on chromosomes 3, 6, and 9 that were consistently detected in at least two of the four populations. Phenotypic variance explained by a single QTL in each population ranged from 3.9% in population 1 to 43.8% in population 2. Joint linkage association mapping across three populations with three biometric models together revealed 16 and 10 main effect QTL for MLN-early and MLN-late, respectively. The QTL identified on chromosomes 3, 5, 6, and 9 were consistent with the QTL identified by linkage mapping. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed high accuracy for prediction across populations for both MLN-early and MLN-late. Overall, the study discovered and validated the presence of major effect QTL on chromosomes 3, 6, and 9 which can be potential candidates for marker-assisted breeding to improve the MLN resistance.

9.
Theor Appl Genet ; 128(10): 1957-68, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26152570

ABSTRACT

KEY MESSAGE: Genome-wide association analysis in tropical and subtropical maize germplasm revealed that MLND resistance is influenced by multiple genomic regions with small to medium effects. The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. Our objective was to gain insights into the genetic architecture underlying the resistance to MLND by genome-wide association study (GWAS) and genomic selection. We used two association mapping (AM) panels comprising a total of 615 diverse tropical/subtropical maize inbred lines. All the lines were evaluated against MLND under artificial inoculation. Both the panels were genotyped using genotyping-by-sequencing. Phenotypic variation for MLND resistance was significant and heritability was moderately high in both the panels. Few promising lines with high resistance to MLND were identified to be used as potential donors. GWAS revealed 24 SNPs that were significantly associated (P < 3 × 10(-5)) with MLND resistance. These SNPs are located within or adjacent to 20 putative candidate genes that are associated with plant disease resistance. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed higher prediction accuracy for IMAS-AM panel (0.56) over DTMA-AM (0.36) panel. The prediction accuracy for both within and across panels is promising; inclusion of MLND resistance associated SNPs into the prediction model further improved the accuracy. Overall, the study revealed that resistance to MLND is controlled by multiple loci with small to medium effects and the SNPs identified by GWAS can be used as potential candidates in MLND resistance breeding program.


Subject(s)
Disease Resistance/genetics , Mosaic Viruses/pathogenicity , Plant Diseases/genetics , Zea mays/genetics , Genetic Association Studies , Genotype , Phenotype , Plant Breeding , Plant Diseases/virology , Polymorphism, Single Nucleotide , Zea mays/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...