Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37109879

ABSTRACT

Green hydrogen is being considered as a next-generation sustainable energy source. It is created electrochemically by water splitting with renewable electricity such as wind, geothermal, solar, and hydropower. The development of electrocatalysts is crucial for the practical production of green hydrogen in order to achieve highly efficient water-splitting systems. Due to its advantages of being environmentally friendly, economically advantageous, and scalable for practical application, electrodeposition is widely used to prepare electrocatalysts. There are still some restrictions on the ability to create highly effective electrocatalysts using electrodeposition owing to the extremely complicated variables required to deposit uniform and large numbers of catalytic active sites. In this review article, we focus on recent advancements in the field of electrodeposition for water splitting, as well as a number of strategies to address current issues. The highly catalytic electrodeposited catalyst systems, including nanostructured layered double hydroxides (LDHs), single-atom catalysts (SACs), high-entropy alloys (HEAs), and core-shell structures, are intensively discussed. Lastly, we offer solutions to current problems and the potential of electrodeposition in upcoming water-splitting electrocatalysts.

2.
Materials (Basel) ; 16(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110115

ABSTRACT

Developing cost-effective, highly catalytic active, and stable electrocatalysts in alkaline electrolytes is important for the development of highly efficient anion-exchange membrane water electrolysis (AEMWE). To this end, metal oxides/hydroxides have attracted wide research interest for efficient electrocatalysts in water splitting owing to their abundance and tunable electronic properties. It is very challenging to achieve an efficient overall catalytic performance based on single metal oxide/hydroxide-based electrocatalysts due to low charge mobilities and limited stability. This review is mainly focused on the advanced strategies to synthesize the multicomponent metal oxide/hydroxide-based materials that include nanostructure engineering, heterointerface engineering, single-atom catalysts, and chemical modification. The state of the art of metal oxide/hydroxide-based heterostructures with various architectures is extensively discussed. Finally, this review provides the fundamental challenges and perspectives regarding the potential future direction of multicomponent metal oxide/hydroxide-based electrocatalysts.

3.
Nat Commun ; 14(1): 609, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36739416

ABSTRACT

Stabilizing atomically dispersed single atoms (SAs) on silicon photoanodes for photoelectrochemical-oxygen evolution reaction is still challenging due to the scarcity of anchoring sites. Here, we elaborately demonstrate the decoration of iridium SAs on silicon photoanodes and assess the role of SAs on the separation and transfer of photogenerated charge carriers. NiO/Ni thin film, an active and highly stable catalyst, is capable of embedding the iridium SAs in its lattices by locally modifying the electronic structure. The isolated iridium SAs enable the effective photogenerated charge transport by suppressing the charge recombination and lower the thermodynamic energy barrier in the potential-determining step. The Ir SAs/NiO/Ni/ZrO2/n-Si photoanode exhibits a benchmarking photoelectrochemical performance with a high photocurrent density of 27.7 mA cm-2 at 1.23 V vs. reversible hydrogen electrode and 130 h stability. This study proposes the rational design of SAs on silicon photoelectrodes and reveals the potential of the iridium SAs to boost photogenerated charge carrier kinetics.

4.
Nano Converg ; 9(1): 33, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35852642

ABSTRACT

Dedications to achieve the highly efficient metal oxide semiconductor for the photoelectrochemical water splitting system have been persisted to utilize the TiO2 as the promising photoanode material. Herein, we report notable progress for nanostructured TiO2 photoanodes using facile sequential one-pot hydrothermal synthesis and annealing in hydrogen. A photocurrent density of 3.04 mA·cm-2 at 1.23 V vs. reversible hydrogen electrode was achieved in TiO2 nanorod arrays annealed in hydrogen ambient, which is approximately 4.25 times higher than that of pristine TiO2 annealed in ambient air. 79.2% of incident photon-to-current efficiency at 380 nm wavelength demonstrates the prominence of the material at the near-UV spectral range region and 100 h chronoamperometric test exhibits the stability of the photoanode. Detailed studies regarding crystallinity, bandgap, and elemental analysis provide the importance of the optimized annealing condition for the TiO2-based photoanodes. Water contact angle measurement displays the effect of hydrogen annealing on the hydrophilicity of the material. This study clearly demonstrates the marked improvement using the optimized hydrogen annealing, providing the promising methodologies for eco-friendly mass production of water splitting photoelectrodes.

5.
Chem Commun (Camb) ; 58(57): 7874-7889, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35766059

ABSTRACT

Hydrogen energy is a promising energy source that is environmentally friendly due to its long-term, large-capacity storage and low greenhouse gas emissions. However, the mass production of hydrogen is still technically difficult due to limitations in efficiency, stability, and cost, even though it can satisfy all of the current energy demands. Water splitting using an electrocatalyst is an efficient method for environmentally friendly hydrogen production, and various catalyst-related studies are being conducted for this purpose. For the last decade, transition metal-based compositions have been at the center of water splitting catalyst research. Despite numerous studies and developments, studies on transition metal-based catalysts so far still have various problems to be solved. Although excellent review papers on transition metal-based catalysts have been reported, the overall scope of transition metal-based catalysts has rarely been covered in the reports. In this review, we present the research about overall transition metal-based electrocatalysts for hydrogen production from four different categories, namely, alloys, transition-metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and single-atom catalysts (SACs). The fundamental roles of metal alloying and unique electrical properties of TMDs, LDHs, and SACs are mainly discussed. Furthermore, we present the recent advances in photovoltaic-electrochemical (PV-EC) systems for sustainable hydrogen production. Finally, perspectives on the issues to be addressed in the research on transition metal-based electrocatalysts are provided.

6.
Small ; 18(12): e2106613, 2022 03.
Article in English | MEDLINE | ID: mdl-35060312

ABSTRACT

In the pandemic era, the development of high-performance indoor air quality monitoring sensors has become more critical than ever. NO2 is one of the most toxic gases in daily life, which induces severe respiratory diseases. Thus, the real-time monitoring of low concentrations of NO2 is highly required. Herein, a visible light-driven ultrasensitive and selective chemoresistive NO2 sensor is presented based on sulfur-doped SnO2 nanoparticles. Sulfur-doped SnO2 nanoparticles are synthesized by incorporating l-cysteine as a sulfur doping agent, which also increases the surface area. The cationic and anionic doping of sulfur induces the formation of intermediate states in the band gap, highly contributing to the substantial enhancement of gas sensing performance under visible light illumination. Extraordinary gas sensing performances such as the gas response of 418 to 5 ppm of NO2 and a detection limit of 0.9 ppt are achieved under blue light illumination. Even under red light illumination, sulfur-doped SnO2 nanoparticles exhibit stable gas sensing. The endurance to humidity and long-term stability of the sensor are outstanding, which amplify the capability as an indoor air quality monitoring sensor. Overall, this study suggests an innovative strategy for developing the next generation of electronic noses.


Subject(s)
Cysteine , Nanoparticles , Light , Nitrogen Dioxide , Sulfur , Tin Compounds
7.
Small ; 17(39): e2103457, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34453489

ABSTRACT

To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge-exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge-rich MoS2 nanoplates are elaborately synthesized and deposited on p-Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti-reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p-Si and catalyst layers facilitates the transport of photogenerated electrons under steady-state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p-Si photocathode exhibits significantly improved photoelectrochemical-hydrogen evolution reaction (PEC-HER) performance in alkaline media with a high photocurrent density of 10 mA cm-2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth-abundant Fe60 (NiCo)30 Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm-2 corresponding to 6.6% solar-to-hydrogen efficiency, which is the highest among p-Si photocathodes.

8.
Nanomicro Lett ; 13(1): 81, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-34138338

ABSTRACT

HIGHLIGHTS: MoP nanorod-array catalysts were directly synthesized on graphene passivated silicon photocathodes without secondary phase. Mo-O-C covalent bondings and energy band bending at heterointerfaces facilitate the electron transfer to the reaction sites. Numerous catalytic sites and drastically enhanced anti-reflectance of MoP nanorods contribute to the high solar energy conversion efficiency. Transition metal phosphides (TMPs) and transition metal dichalcogenides (TMDs) have been widely investigated as photoelectrochemical (PEC) catalysts for hydrogen evolution reaction (HER). Using high-temperature processes to get crystallized compounds with large-area uniformity, it is still challenging to directly synthesize these catalysts on silicon photocathodes due to chemical incompatibility at the heterointerface. Here, a graphene interlayer is applied between p-Si and MoP nanorods to enable fully engineered interfaces without forming a metallic secondary compound that absorbs a parasitic light and provides an inefficient electron path for hydrogen evolution. Furthermore, the graphene facilitates the photogenerated electrons to rapidly transfer by creating Mo-O-C covalent bondings and energetically favorable band bending. With a bridging role of graphene, numerous active sites and anti-reflectance of MoP nanorods lead to significantly improved PEC-HER performance with a high photocurrent density of 21.8 mA cm-2 at 0 V versus RHE and high stability. Besides, low dependence on pH and temperature is observed with MoP nanorods incorporated photocathodes, which is desirable for practical use as a part of PEC cells. These results indicate that the direct synthesis of TMPs and TMDs enabled by graphene interlayer is a new promising way to fabricate Si-based photocathodes with high-quality interfaces and superior HER performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...