Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Pharmacol ; 14: 1131391, 2023.
Article in English | MEDLINE | ID: mdl-37144222

ABSTRACT

Background: Remimazolam tosilate is a new ultra-short-acting benzodiazepine sedative medicine. In this study, we evaluated the effect of remimazolam tosilate on the incidence of hypoxemia during sedation in elderly patients undergoing gastrointestinal endoscopy. Methods: Patients in the remimazolam group received an initial dose of 0.1 mg/kg and a bolus dose of 2.5 mg of remimazolam tosilate, whereas patients in the propofol group received an initial dose of 1.5 mg/kg and a bolus dose of 0.5 mg/kg of propofol. Patients received ASA standard monitoring (heart-rate, non-invasive blood pressure, and pulse oxygen saturation) during the entire examination process. The primary outcome was the incidence of moderate hypoxemia (defined as 85%≤ SpO2< 90%, >15s) during the gastrointestinal endoscopy. The secondary outcomes included the incidence of mild hypoxemia (defined as SpO2 90%-94%) and severe hypoxemia (defined as SpO2< 85%, >15s), the lowest pulse oxygen saturation, airway maneuvers used to correct hypoxemia, patient's hemodynamic as well as other adverse events. Results: 107 elderly patients (67.6 ± 5.7 years old) in the remimazolam group and 109 elderly patients (67.5 ± 4.9 years old) in the propofol group were analyzed. The incidence of moderate hypoxemia was 2.8% in the remimazolam group and 17.4% in the propofol group (relative risk [RR] = 0.161; 95% confidence interval [CI], 0.049 to 0.528; p < 0.001). The frequency of mild hypoxemia was less in the remimazolam group, but not statistically significant (9.3% vs. 14.7%; RR = 0.637; 95% CI, 0.303 to 1.339; p = 0.228). There was no significant difference in the incidence of severe hypoxemia between the two groups (4.7% vs. 5.5%; RR = 0.849; 95% CI, 0.267 to 2.698; p = 0.781). The median lowest SpO2 during the examination was 98% (IQR, 96.0%-99.0%) in patients in the remimazolam group, which was significantly higher than in patients in the propofol group (96%, IQR, 92.0%-99.0%, p < 0.001). Patients in the remimazolam group received more drug supplementation during endoscopy than patients in the propofol group (p = 0.014). There was a statistically significant difference in the incidence of hypotension between the two groups (2.8% vs. 12.8%; RR = 0.218; 95% CI, 0.065 to 0.738; p = 0.006). No significant differences were found in the incidence of adverse events such as nausea and vomiting, dizziness, and prolonged sedation. Conclusion: This study explored the safety of remimazolam compared with propofol during gastrointestinal endoscopy in elderly patients. Despite the increased supplemental doses during sedation, remimazolam improved risk of moderate hypoxemia (i.e., 85%≤ SpO2 < 90%) and hypotension in elderly patients.

2.
Circ Res ; 132(7): 867-881, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36884028

ABSTRACT

BACKGROUND: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, ß-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the ß-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS: We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, ß3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS: In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the ß3AR-agonist, BRL-37344, increased myocyte BDNF content, while ß3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the ß1AR blocker, metoprolol, via upregulated ß3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS: BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac ß3AR stimulation, or ß-blockers (via upregulated ß3AR), is another BDNF-based means to fend off chronic postischemic heart failure.


Subject(s)
Heart Failure , Myocardial Ischemia , Neuroblastoma , Ventricular Dysfunction, Left , Rats , Mice , Humans , Animals , Brain-Derived Neurotrophic Factor/metabolism , Endothelial Cells/metabolism , Neuroblastoma/metabolism , Heart Failure/etiology , Heart Failure/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/metabolism , Receptors, Adrenergic, beta/metabolism
3.
Elife ; 112022 12 14.
Article in English | MEDLINE | ID: mdl-36515265

ABSTRACT

Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.


Subject(s)
Adaptation, Physiological , Myocytes, Cardiac , Stress, Physiological , Animals , Mice , Heart Failure/genetics , Heart Failure/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy/physiopathology , Mice, Transgenic , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Humans
4.
J Am Heart Assoc ; 11(15): e026071, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35904190

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi-hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP-related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.


Subject(s)
Heart Failure , Animals , Cats , Heart Failure/drug therapy , Hypertrophy, Left Ventricular/genetics , Mice , Models, Animal , Proteomics , Rats , Stroke Volume/physiology
5.
J Pharmacol Exp Ther ; 377(1): 39-50, 2021 04.
Article in English | MEDLINE | ID: mdl-33414131

ABSTRACT

Short-chain fatty acids (SCFAs) are metabolites produced almost exclusively by the gut microbiota and are an essential mechanism by which gut microbes influence host physiology. Given that SCFAs induce vasodilation, we hypothesized that they might have additional cardiovascular effects. In this study, novel mechanisms of SCFA action were uncovered by examining the acute effects of SCFAs on cardiovascular physiology in vivo and ex vivo. Acute delivery of SCFAs in conscious radiotelemetry-implanted mice results in a simultaneous decrease in both mean arterial pressure and heart rate (HR). Inhibition of sympathetic tone by the selective ß-1 adrenergic receptor antagonist atenolol blocks the acute drop in HR seen with acetate administration, yet the decrease in mean arterial pressure persists. Treatment with tyramine, an indirect sympathomimetic, also blocks the acetate-induced acute drop in HR. Langendorff preparations show that acetate lowers HR only after long-term exposure and at a smaller magnitude than seen in vivo. Pressure-volume loops after acetate injection show a decrease in load-independent measures of cardiac contractility. Isolated trabecular muscle preparations also show a reduction in force generation upon SCFA treatment, though only at supraphysiological concentrations. These experiments demonstrate a direct cardiac component of the SCFA cardiovascular response. These data show that acetate affects blood pressure and cardiac function through parallel mechanisms and establish a role for SCFAs in modulating sympathetic tone and cardiac contractility, further advancing our understanding of the role of SCFAs in blood pressure regulation. SIGNIFICANCE STATEMENT: Acetate, a short-chain fatty acid, acutely lowers heart rate (HR) as well as mean arterial pressure in vivo in radiotelemetry-implanted mice. Acetate is acting in a sympatholytic manner on HR and exerts negative inotropic effects in vivo. This work has implications for potential short-chain fatty acid therapeutics as well as gut dysbiosis-related disease states.


Subject(s)
Acetates/pharmacology , Blood Pressure , Fatty Acids, Volatile/pharmacology , Heart Rate , Heart/drug effects , Myocardial Contraction , Acetates/administration & dosage , Animals , Fatty Acids, Volatile/administration & dosage , Female , Heart/physiology , Male , Mice , Mice, Inbred C57BL , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology
6.
Circ Res ; 128(5): 639-651, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33401933

ABSTRACT

RATIONALE: The mTORC1 (mechanistic target of rapamycin complex-1) controls metabolism and protein homeostasis and is activated following ischemia reperfusion (IR) injury and by ischemic preconditioning (IPC). However, studies vary as to whether this activation is beneficial or detrimental, and its influence on metabolism after IR is little reported. A limitation of prior investigations is their use of broad gain/loss of mTORC1 function, mostly applied before ischemic stress. This can be circumvented by regulating one serine (S1365) on TSC2 (tuberous sclerosis complex) to achieve bidirectional mTORC1 modulation but only with TCS2-regulated costimulation. OBJECTIVE: We tested the hypothesis that reduced TSC2 S1365 phosphorylation protects the myocardium against IR and is required for IPC by amplifying mTORC1 activity to favor glycolytic metabolism. METHODS AND RESULTS: Mice with either S1365A (TSC2SA; phospho-null) or S1365E (TSC2SE; phosphomimetic) knockin mutations were studied ex vivo and in vivo. In response to IR, hearts from TSC2SA mice had amplified mTORC1 activation and improved heart function compared with wild-type and TSC2SE hearts. The magnitude of protection matched IPC. IPC requited less S1365 phosphorylation, as TSC2SE hearts gained no benefit and failed to activate mTORC1 with IPC. IR metabolism was altered in TSC2SA, with increased mitochondrial oxygen consumption rate and glycolytic capacity (stressed/maximal extracellular acidification) after myocyte hypoxia-reperfusion. In whole heart, lactate increased and long-chain acylcarnitine levels declined during ischemia. The relative IR protection in TSC2SA was lost by lowering glucose in the perfusate by 36%. Adding fatty acid (palmitate) compensated for reduced glucose in wild type and TSC2SE but not TSC2SA which had the worst post-IR function under these conditions. CONCLUSIONS: TSC2-S1365 phosphorylation status regulates myocardial substrate utilization, and its decline activates mTORC1 biasing metabolism away from fatty acid oxidation to glycolysis to confer protection against IR. This pathway is also engaged and reduced TSC2 S1365 phosphorylation required for effective IPC. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Glycolysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Animals , Carnitine/analogs & derivatives , Carnitine/metabolism , Cells, Cultured , Glucose/metabolism , Ischemic Preconditioning , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Mutation , Myocardial Reperfusion Injury/therapy , Oxygen/metabolism , Phosphorylation , Rats , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism
7.
J Clin Med ; 9(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255451

ABSTRACT

Physiological stressors, such as exercise, can precipitate sudden cardiac death or heart failure progression in patients with arrhythmogenic cardiomyopathy (ACM). Yet, whether and to what extent a highly prevalent and more elusive environmental factor, such as psychosocial stress (PSS), can also increase ACM disease progression is unexplored. Here, we first quantified perceived stress levels in patients with ACM and found these levels correlated with the extent of arrhythmias and cardiac dysfunction. To determine whether the observed correlation is due to causation, we inflicted PSS-via the resident-intruder (RI) paradigm-upon Desmoglein-2 mutant mice, a vigorously used mammalian model of ACM. We found that ACM mice succumbed to abnormally high in-trial, PSS mortality. Conversely, no sudden deaths occurred in wildtype (WT) counterparts. Desmoglein-2 mice that survived RI challenge manifested markedly worse cardiac dysfunction and remodeling, namely apoptosis and fibrosis. Furthermore, WT and ACM mice displayed similar behavior at baseline, but Desmoglein-2 mice exhibited heightened anxiety following RI-induced PSS. This outcome correlated with the worsening of cardiac phenotypes. Our mouse model demonstrates that in ACM-like subjects, PSS is incisive enough to deteriorate cardiac structure and function per se, i.e., in the absence of any pre-existing anxious behavior. Hence, PSS may represent a previously underappreciated risk factor in ACM disease penetrance.

8.
J Gen Physiol ; 151(6): 758-770, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30842219

ABSTRACT

Nitroxyl (HNO) positively modulates myocardial function by accelerating Ca2+ reuptake into the sarcoplasmic reticulum (SR). HNO-induced enhancement of myocardial Ca2+ cycling and function is due to the modification of cysteines in the transmembrane domain of phospholamban (PLN), which results in activation of SR Ca2+-ATPase (SERCA2a) by functionally uncoupling PLN from SERCA2a. However, which cysteines are modified by HNO, and whether HNO induces reversible disulfides or single cysteine sulfinamides (RS(O)NH2) that are less easily reversed by reductants, remain to be determined. Using an 15N-edited NMR method for sulfinamide detection, we first demonstrate that Cys46 and Cys41 are the main targets of HNO reactivity with PLN. Supporting this conclusion, mutation of PLN cysteines 46 and 41 to alanine reduces the HNO-induced enhancement of SERCA2a activity. Treatment of WT-PLN with HNO leads to sulfinamide formation when the HNO donor is in excess, whereas disulfide formation is expected to dominate when the HNO/thiol stoichiometry approaches a 1:1 ratio that is more similar to that anticipated in vivo under normal, physiological conditions. Thus, 15N-edited NMR spectroscopy detects redox changes on thiols that are unique to HNO, greatly advancing the ability to detect HNO footprints in biological systems, while further differentiating HNO-induced post-translational modifications from those imparted by other reactive nitrogen or oxygen species. The present study confirms the potential of HNO as a signaling molecule in the cardiovascular system.


Subject(s)
Calcium-Binding Proteins/metabolism , Cardiovascular System/drug effects , Cysteine/metabolism , Nitrogen Oxides/pharmacology , Animals , Calcium/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Oxidation-Reduction/drug effects , Protein Processing, Post-Translational/drug effects , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...