Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 98(5): 1100-1109, 2022 09.
Article in English | MEDLINE | ID: mdl-35191044

ABSTRACT

Ruta chalepensis, a medicinal plant, produces biologically active coumarins (CRs) and furanocoumarins (FCRs). However, their yield is quite low in cultivated plants. In this work, the influence of light-emitting diodes (LEDs) was investigated on the accumulation of CRs and FCRs in the callus cultures and field-grown plants of R. chalepensis. Among the various tested wavelengths of LED lights, maximum accumulation of CR and FCRs was recorded under blue LED treatment in both the callus cultures as well as field-grown plants when compared with respective controls treated with white LED. Metabolite analyses of LED-treated field-grown plants showed that highest concentrations of CR (umbelliferone, 2.8-fold), and FCRs (psoralen, 2.3-fold; xanthotoxin, 3.8-fold and bergapten, 1.16-fold) were accumulated upon blue LED-treatment for 6 days. CR and FCRs contents were also analyzed in the blue LED- and red LED-treated in vitro callus tissue. Upon blue LED-treatment, callus accumulated significantly high levels of umbelliferone (48.6 ± 1.2 µg g-1 DW), psoralen (370.12 ± 10.6 µg g-1 DW) and xanthotoxin (10.16 ± 0.48 µg g-1 DW). These findings imply that blue LED-treatment is a viable option as a noninvasive and low-cost elicitation technology for the enhanced production of biologically active CR and FCRs in field-grown plants and callus cultures of R. chalepensis.


Subject(s)
Furocoumarins , Ruta , 5-Methoxypsoralen , Coumarins , Methoxsalen , Ruta/metabolism , Umbelliferones/metabolism
2.
Food Funct ; 12(14): 6603-6625, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34105538

ABSTRACT

Piper betle leaves possess several ethnomedicinal properties and are immensely used in traditional medicinal practices in regions of Asian and African subcontinents. However, their effects in treating skeletal complications are least known. In this study, we evaluated cellular and molecular effects of betel leaf extract (BLE) and its major phytoconstituent, hydroxychavicol (HCV) in promoting osteogenesis in vitro and alleviating glucocorticoid induced osteoporosis (GIO) in vivo. Both BLE and HCV markedly stimulated osteoblast differentiation of C3H10T1/2 cells with increased expression of RUNX2 and osteopontin through the GSK-3ß/ß-catenin-signaling pathway. Also, oral administration of BLE and HCV in GIO rats resulted in restoration of bone mass and tissue microarchitecture. Thus, with our findings we conclude that BLE and HCV promote osteogenesis of C3H10T1/2 cells via the GSK-3ß/ß-catenin pathway and alleviate GIO in rats.


Subject(s)
Eugenol/analogs & derivatives , Osteogenesis/drug effects , Osteoporosis/drug therapy , Piper betle/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Bone Density/drug effects , Cell Differentiation/drug effects , Cell Line , Core Binding Factor Alpha 1 Subunit/metabolism , Eugenol/pharmacology , Female , Glucocorticoids/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Mice , Osteoblasts/drug effects , Osteoporosis/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , beta Catenin/metabolism
3.
J Tradit Complement Med ; 10(1): 52-59, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31956558

ABSTRACT

Boerhavia diffusa is a perennial herb belonging to the Nyctaginaceae family. This plant has been widely used in Indian traditional medicinal system to cure several human ailments. However, traditional use of this plant in the treatment and management of wounds has not been validated by any comprehensive scientific study. The present study was aimed to explore the in vitro and in vivo wound healing potential of methanol extract (ME) and chloroform extract (CE) from B. diffusa leaf and subsequent identification of the bioactive metabolites, which might be responsible for enhancement of wound healing property of the extracts. The study included in vitro cell viability and wound scratch assays as well as in vivo excision wound assays in rat models. Both ME and CE were analysed for their antioxidant properties and phenolics content. The gas chromatography-mass spectrometry analyses were performed for identification of bioactive metabolites present in the ME and CE. ME of B. diffusa leaf significantly enhanced viability and migration of human keratinocyte cells (HaCaT) as compared to the untreated and CE-treated groups. The topical application of ME of B. diffusa leaf in excision wound model significantly decreased the wound area by the 14th day (91%) as compared to control (22%) (p < 0.05). The GC-MS analysis revealed the presence of caffeic acid, ferulic acid and D-pinitol as the major bioactive metabolites in ME. These results suggest that ME of B. diffusa possesses significant wound healing potential, where D-pinitol and caffeic acid served as the lead constituent metabolites responsible for the healing.

SELECTION OF CITATIONS
SEARCH DETAIL