Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(19)2023 10 07.
Article in English | MEDLINE | ID: mdl-37830629

ABSTRACT

The proximal caudal vertebrae and notochord in thick-toed geckos (TG) (Chondrodactylus turneri, Gray, 1864) were investigated after a 30-day space flight onboard the biosatellite Bion-M1. This region has not been explored in previous studies. Our research focused on finding sites most affected by demineralization caused by microgravity (G0). We used X-ray phase-contrast tomography to study TG samples without invasive prior preparation to clarify our previous findings on the resistance of TG's bones to demineralization in G0. The results of the present study confirmed that geckos are capable of preserving bone mass after flight, as neither cortical nor trabecular bone volume fraction showed statistically significant changes after flight. On the other hand, we observed a clear decrease in the mineralization of the notochordal septum and a substantial rise in intercentrum volume following the flight. To monitor TG's mineral metabolism in G0, we propose to measure the volume of mineralized tissue in the notochordal septum. This technique holds promise as a sensitive approach to track the demineralization process in G0, given that the volume of calcification within the septum is limited, making it easy to detect even slight changes in mineral content.


Subject(s)
Lizards , Space Flight , Animals , X-Ray Microtomography , Coccyx , X-Rays , Minerals
2.
Life (Basel) ; 13(5)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240827

ABSTRACT

Recent morphological data on human brain development are quite fragmentary. However, they are highly requested for a number of medical practices, educational programs, and fundamental research in the fields of embryology, cytology and histology, neurology, physiology, path anatomy, neonatology, and others. This paper provides the initial information on the new online Human Prenatal Brain Development Atlas (HBDA). The Atlas will start with forebrain annotated hemisphere maps, based on human fetal brain serial sections at the different stages of prenatal ontogenesis. Spatiotemporal changes in the regional-specific immunophenotype profiles will also be demonstrated on virtual serial sections. The HBDA can serve as a reference database for the neurological research, which provides opportunity to compare the data obtained by noninvasive techniques, such as neurosonography, X-ray computed tomography and magnetic resonance imaging, functional magnetic resonance imaging, 3D high-resolution phase-contrast computed tomography visualization techniques, as well as spatial transcriptomics data. It could also become a database for the qualitative and quantitative analysis of individual variability in the human brain. Systemized data on the mechanisms and pathways of prenatal human glio- and neurogenesis could also contribute to the search for new therapy methods for a large spectrum of neurological pathologies, including neurodegenerative and cancer diseases. The preliminary data are now accessible on the special HBDA website.

3.
J Gerontol A Biol Sci Med Sci ; 78(9): 1558-1560, 2023 08 27.
Article in English | MEDLINE | ID: mdl-36966358

ABSTRACT

In this work, we report preliminary results about the involution of the human pineal gland involution. The detailed analysis of pineal structure was done on autopsy material of 77 persons in age 27-96 using x-ray phase-contrast tomography, histology, and immunohistochemistry. Our study suggests that the pineal gland alteration in older adults may be more profound than has been reported to date. We identified and described a new form of pineal gland involution that eventually led to the total degradation of the pineal gland. To our knowledge, this study is the first to report on the complete replacement of pineal gland parenchyma with connective tissue in older adults.


Subject(s)
Cysts , Pineal Gland , Humans , Aged , Aged, 80 and over , Pineal Gland/diagnostic imaging , Pineal Gland/pathology , Cysts/pathology , Immunohistochemistry , Autopsy
4.
Med Phys ; 50(3): 1601-1613, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36309985

ABSTRACT

BACKGROUND: The formation of concrements in human pineal gland (PG) is a physiological process and, according to many researchers, is associated with the involution of PG structures. The majority of scientific publications concern progressive calcification of PG, leaving out studies on the destruction of already formed calcified concrements. Our study fills the gap in knowledge about calcified zones destruction in PG in normal aging and neuropathological conditions, which has not been addressed until now. PURPOSE: Our objective is to gain insight into human PG tissue impairment in both normal aging and neurodegenerative conditions. X-ray phase-contrast tomography (XPCT) allowed us to study PG tissue degeneration at high spatial resolution and, for the first time, to examine the damaged PG concrements in detail. Our research finding could potentially enhance the understanding of the PG involvement in the process of aging as well as in Alzheimer's disease (AD) and vascular dementia (VD). METHODS: The research was carried out on human PG autopsy material in normal aging, VD, and AD conditions. Laboratory-based micro-computed tomography (micro-CT) was used to collect and evaluate samples of native, uncut, and unstained PG with different degrees of pineal calcification. The detailed high-resolution 3D images of the selected PGs were produced using synchrotron-based XPCT. Histology and immunohistochemistry of soft PG tissue confirmed XPCT results. RESULTS: We performed via micro-CT the evaluation of the morphometric parameters of PG such as total sample volume, calcified concrements volume, and percentage of concrements in the total volume of the sample. XPCT imaging revealed high-resolution details of age-related PG alteration. In particular, we noted signs of moderate degradation of concrements in some PGs from elderly donors. In addition, our analysis revealed noticeable degenerative change in both concrements and soft tissue of PGs with neuropathology. In particular, we observed a hollow core and separated layers as well as deep ragged cracks in PG concrements of AD and VD samples. In parenchyma of some samples, we detected wide pinealocyte-free fluid-filled areas adjacent to the calcified zones. CONCLUSION: The present work provides the basis for future scientific research focused on the dynamic nature of PG calcium deposits and PG soft tissue in normal aging and neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Calcinosis , Neurodegenerative Diseases , Pineal Gland , Humans , Aged , Pineal Gland/diagnostic imaging , Pineal Gland/metabolism , Pineal Gland/pathology , X-Ray Microtomography , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Calcinosis/diagnostic imaging , Calcinosis/pathology
5.
Tomography ; 8(4): 1854-1868, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35894021

ABSTRACT

The human olfactory bulb (OB) has a laminar structure. The segregation of cell populations in the OB image poses a significant challenge because of indistinct boundaries of the layers. Standard 3D visualization tools usually have a low resolution and cannot provide the high accuracy required for morphometric analysis. X-ray phase contrast tomography (XPCT) offers sufficient resolution and contrast to identify single cells in large volumes of the brain. The numerous microanatomical structures detectable in XPCT image of the OB, however, greatly complicate the manual delineation of OB neuronal cell layers. To address the challenging problem of fully automated segmentation of XPCT images of human OB morphological layers, we propose a new pipeline for tomographic data processing. Convolutional neural networks (CNN) were used to segment XPCT image of native unstained human OB. Virtual segmentation of the whole OB and an accurate delineation of each layer in a healthy non-demented OB is mandatory as the first step for assessing OB morphological changes in smell impairment research. In this framework, we proposed an effective tool that could help to shed light on OB layer-specific degeneration in patients with olfactory disorder.


Subject(s)
Deep Learning , Olfactory Bulb , Humans , Neural Networks, Computer , Olfactory Bulb/diagnostic imaging , Tomography, X-Ray Computed , X-Rays
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360987

ABSTRACT

The evolutionary and ontogenetic development of the carotid body is still understudied. Research aimed at studying the comparative morphology of the organ at different periods in the individual development of various animal species should play a crucial role in understanding the physiology of the carotid body. However, despite more than two centuries of study, the human carotid body remains poorly understood. There are many knowledge gaps in particular related to the antenatal development of this structure. The aim of our work is to study the morphological and immunohistochemical characteristics of the human carotid body in the antenatal and postnatal periods of development. We investigated the human carotid bodies from 1 embryo, 20 fetuses and 13 adults of different ages using samples obtained at autopsy. Immunohistochemistry revealed expression of ßIII-tubulin and tyrosine hydroxylase in the type I cells and nerve fibers at all periods of ontogenesis; synaptophysin and PGP9.5 in the type I cells in some of the antenatal cases and all of the postnatal cases; 200 kDa neurofilaments in nerve fibers in some of the antenatal cases and all of the postnatal cases; and GFAP and S100 in the type II cells and Schwann cells in some of the antenatal cases and all of the postnatal cases. A high level of tyrosine hydroxylase in the type I cells was a distinctive feature of the antenatal carotid bodies. On the contrary, in the type I cells of adults, the expression of tyrosine hydroxylase was significantly lower. Our data suggest that the human carotid body may perform an endocrine function in the antenatal period, while in the postnatal period of development, it loses this function and becomes a chemosensory organ.


Subject(s)
Carotid Body/growth & development , Adolescent , Adult , Aged , Aged, 80 and over , Carotid Body/embryology , Carotid Body/metabolism , Child , Child, Preschool , Glial Fibrillary Acidic Protein/metabolism , Humans , Infant , Infant, Newborn , Middle Aged , Synaptophysin/metabolism , Tubulin/metabolism , Tyrosine 3-Monooxygenase/metabolism
7.
J Struct Biol ; 212(3): 107659, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33152420

ABSTRACT

Pineal gland (PG) is a part of the human brain epithalamus that plays an important role in sleep, circadian rhythm, immunity, and reproduction. The calcium deposits and lesions in PG interfere with normal function of the organ and can be associated with different health disorders including serious neurological diseases. At the moment, the detailed mechanisms of PG calcifications and PG lesions formation as well as their involvement in pathological processes are not fully understood. The deep and comprehensive study of the structure of the uncut human PG with histological details, poses a stiff challenge to most imaging techniques, due to low spatial resolution, low visibility or to exceedingly aggressive sample preparation. Here, we investigate the whole uncut and unstained human post-mortem PGs by X-ray phase contrast tomography (XPCT). XPCT is an advanced 3D imaging technique, that permits to study of both soft and calcified tissue of a sample at different scales: from the whole organ to cell structure. In our research we simultaneously resolved 3D structure of parenchyma, vascular network and calcifications. Moreover, we distinguished structural details of intact and degenerated PG tissue. We discriminated calcifications with different structure, pinealocytes nuclei and the glial cells processes. All results were validated by histology. Our research clear demonstrated that XPCT is a potential tool for the high resolution 3D imaging of PG morphological features. This technique opens a new perspective to investigate PG dysfunction and understand the mechanisms of onset and progression of diseases involving the pineal gland.


Subject(s)
Calcinosis/pathology , Pineal Gland/pathology , Aged , Brain/pathology , Female , Humans , Imaging, Three-Dimensional/methods , Male , Microscopy, Phase-Contrast/methods , Middle Aged , Tomography, X-Ray , X-Rays
8.
J Chem Neuroanat ; 92: 61-70, 2018 10.
Article in English | MEDLINE | ID: mdl-29894756

ABSTRACT

The prepiriform cortex is a part of the phylogenetically oldest pallial division (paleocortex) representing the primary olfactory cortex. While olfactory centers in laboratory animals have been extensively investigated, the developmental timetable of the human prepiriform area is poorly understood. Thus, in the present study we aim to examine the prepiriform cortex in human fetuses from eight postconceptional weeks to birth. Based on cytoarchitecture and immunohistochemistry analysis (NeuN-, SYP-, NSE-, TH-, GFAP-, MBP-) four main periods of the prepiriform cortex fetal development are suggested: the beginning of prefetal stage (the eighth week from conception), the period from the ending of prefetal stage (9-12 postconceptional weeks) to 17 weeks of gestation, 18-27 weeks of gestation and the late fetal period (29-40 gestational weeks). We found that the initial layer differentiation took place before the ninthtenth weeks from conception and by ten weeks the paleocortical plate of the prepiriform cortex was shaped. Both total cell density and NeuN-immunoreactive cell density peaked in the early fetuses and started to decrease after 17 gestational weeks, attaining intermediate values at 18-27 weeks and becoming significantly lower in the late fetuses. In contrast, the NeuN-immunoreactive cell ratio gradually increased over the whole examined period. The prepiriform cortex was defined as approaches the state at birth at 30 gestational weeks. The same developmental periods were observed with SYP- and NSE-assays. No significant distribution of TH immunoreactivity was described in the prepiriform cortex of human fetuses. The prior paleocortex development was demonstrated using glial markers: GFAPimmunoreactivity appeared in the prepiriform cortex at the middle of the early fetal period, ahead of the neocortex and insular cortex. The earlier rates of GFAP-immunoreactivity expansion in the prepiriform cortex, as compared to other pallial regions, persisted in the later fetuses. The first MBP-immunoreactive fibres within pallium were detected in the lateral olfactory tract at 30 weeks. Therefore, the prepiriform cortex approaches a level of maturation similar to that at birth already at the beginning of the late fetal period and matures prior to other pallial regions.


Subject(s)
Embryonic Development/physiology , Olfactory Cortex/embryology , Organogenesis/physiology , Antigens, Nuclear/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Myelin Basic Protein/metabolism , Nerve Tissue Proteins/metabolism , Olfactory Cortex/metabolism , Pregnancy , Pregnancy Trimester, First/metabolism , Synaptophysin/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...