Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Drug Des Devel Ther ; 18: 549-566, 2024.
Article in English | MEDLINE | ID: mdl-38419811

ABSTRACT

Introduction: Tacrine, an FDA-approved acetylcholinesterase inhibitor, has shown efficacy in treating Alzheimer's disease, but its clinical use is limited by hepatotoxicity. This study investigates the protective effects of red ginseng against tacrine-induced hepatotoxicity, focusing on oxidative stress. Methods: A network depicting the interaction between compounds and targets was constructed for RG. Effect of RG was determined by MTT and FACS analysis with cells stained by rhodamine 123. Proteins were extracted and subjected to immunoblotting for apoptosis-related proteins. Results: The outcomes of the network analysis revealed a significant association, with 20 out of 82 identified primary RG targets aligning with those involved in oxidative liver damage including notable interactions within the AMPK pathway. in vitro experiments showed that RG, particularly at 1000µg/mL, mitigated tacrine-induced apoptosis and mitochondrial damage, while activating the LKB1-mediated AMPK pathway and Hippo-Yap signaling. In mice, RG also protected the liver injury induced by tacrine, as similar protective effects to silymarin, a well-known drug for liver toxicity protection. Discussion: Our study reveals the potential of RG in mitigating tacrine-induced hepatotoxicity, suggesting the administration of natural products like RG to reduce toxicity in Alzheimer's disease treatment.


Subject(s)
Alzheimer Disease , Chemical and Drug Induced Liver Injury , Panax , Mice , Animals , Tacrine/pharmacology , Tacrine/therapeutic use , Alzheimer Disease/drug therapy , Acetylcholinesterase/metabolism , Network Pharmacology , AMP-Activated Protein Kinases , Cholinesterase Inhibitors/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control
2.
Nutrients ; 14(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145189

ABSTRACT

Grifola frondosa (GF), a species of Basidiomycotina, is widely distributed across Asia and has been used as an immunomodulatory, anti-bacterial, and anti-cancer agent. In the present study, the pharmacological activity of the GF extract against an ecotoxicological industrial chemical, bisphenol A (BPA) in normal human dermal fibroblasts (NHDFs), was investigated. GF extract containing naringin, hesperidin, chlorogenic acid, and kaempferol showed an inhibitory effect on cell death and inflammation induced by BPA in the NHDFs. For the cell death caused by BPA, GF extract inhibited the production of reactive oxygen species responsible for the unique activation of the extracellular signal-regulated kinase. In addition, GF extract attenuated the expression of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and the pro-inflammatory cytokine IL-1ß by the suppression of the redox-sensitive transcription factor, nuclear factor-kappa B (NF-κB) in BPA-treated NHDFs. For the inflammation triggered by BPA, GF extract blocked the inflammasome-mediated caspase-1 activation that leads to the secretion of IL-1ß protein. These results indicate that the GF extract is a functional antioxidant that prevents skin fibroblastic pyroptosis induced by BPA.


Subject(s)
Endocrine Disruptors , Grifola , Hesperidin , Antioxidants/pharmacology , Benzhydryl Compounds , Caspase 3 , Chlorogenic Acid , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases , Fibroblasts/metabolism , Humans , Inflammasomes , Inflammation/chemically induced , Kaempferols , NF-kappa B/metabolism , Phenols , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2 , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism
3.
Antioxidants (Basel) ; 10(3)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805724

ABSTRACT

Tart cherry (Prunus cerasus L.), a medicinal food containing high concentrations of phytochemicals, has a variety of antioxidant activities and health benefits. Here, we investigate the functional effect of tart cherry during apoptotic cell death elicited by airborne particulate matter with a diameter of <10 µm (PM10) in human epidermal keratinocyte HaCaT cells. The PM10 particles significantly induced cytotoxicity in the HaCaT cells. The decrease in cell viability was restored upon treatment with tart cherry extract (200 µg/mL) containing chlorogenic acid, quercetin, and kaempferol. Tart cherry inhibited the intracellular reactive oxygen species (ROS) responsible for the distinctive activations of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in PM10-treated HaCaT cells. Interestingly, tart cherry significantly inhibited the expression of apoptosis-related genes (B-Cell Lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), and caspase-3) as regulated by the activation of transcription factor nuclear factor-kappa B (NF-κB). These results demonstrate that tart cherry is a medicinal food that blocks the mitochondrial pathway of apoptosis induced by PM10 in human epidermal keratinocytes.

4.
Article in English | MEDLINE | ID: mdl-33868441

ABSTRACT

Porphyra tenera (laver) has long been a popular and traditional seaweed food in Korea, Japan, and China. Historically, it was known as a marine medicinal herb to treat hemorrhoids and cholera morbus in Donguibogam. We investigated the effects of P. tenera extract (PTE) for its antioxidant and anti-inflammatory activities. These activities were measured using assays for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging and its superoxide dismutase- (SOD-) like activity, and through the inhibitory production of inflammatory mediators (prostaglandin E2 (PGE2), NO, tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6)) in lipopolysaccharide- (LPS-) stimulated Raw 264.7 cells. The antioxidant assay results showed that PTE displayed DPPH radical scavenging activity (46.44%), NO radical scavenging activity (67.14%), and SOD-like activity (80.29%) at a concentration of 5 mg/mL. In the anti-inflammatory assays, treatment with PTE (1 mg/mL) significantly inhibited expression levels of LPS-induced COX-2 and iNOS, as well as the production of PGE2, NO, TNF-α, and IL-6. These results show that PTE has antioxidant and anti-inflammatory properties and provide scientific evidence to explain the antioxidative and anti-inflammatory properties of PTE.

5.
Pharm Biol ; 59(1): 321-334, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33770452

ABSTRACT

CONTEXT: Kyeongok-go (KOG) is a traditional mixed herb preparation consisting of Panax ginseng CA Meyer (Araliaceae), Poria cocos Wolf (Polyporaceae), Rehmannia glutinosa (Gaertner) Liboschitz ex Steudel (Orobanchaceae), and honey. Various pharmacological effects of KOG are reported, but the efficacy on respiratory diseases has not been evaluated. OBJECTIVE: The anti-inflammatory, expectorant, and antitussive properties of KOG were examined using animal models of respiratory diseases. MATERIALS AND METHODS: KOG (100, 200, and 400 mg/kg) was orally administered to ICR mice (n = 8) once a day for 11 days. Anti-inflammatory effects of vehicle, xylene, KOG and DEXA (1 mg/kg) were determined by monitoring edoema and redness of treated ears, and measuring the relative and absolute weight of each ear. Expectorant properties of vehicle, KOG and AM (250 mg/kg) were evaluated by observing body surface redness, and the amount of mucous secreted by the trachea. The antitussive potential of vehicle, NH4OH, KOG and TB (50 mg/kg) was evaluated by monitoring changes in the number of coughs (for 6 min). RESULTS: KOG (400 mg/kg) treated mice showed 31.29% and 30.72% (p < 0.01) decreases in the relative and absolute weights of each ear relative to xylene control mice, 39.06% increases (p < 0.01) in TLF OD values relative to intact vehicle control mice, and 59.53% decrease (p < 0.01) in coughing compared to NH4OH control mice. Dose-dependent changes were observed in all experimental models. CONCLUSIONS: KOG may be a potential therapeutic agent for the treatment of various respiratory diseases, particularly those caused by environmental toxins.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antitussive Agents/pharmacology , Expectorants/pharmacology , Plant Extracts/pharmacology , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Antitussive Agents/administration & dosage , Cough/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , Expectorants/administration & dosage , Inflammation/drug therapy , Male , Mice , Mice, Inbred ICR , Phytotherapy/methods , Plant Extracts/administration & dosage
6.
BMB Rep ; 54(2): 106-111, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32843130

ABSTRACT

Hemistepsin A (HsA) is a guaianolide sesquiterpene lactone that inhibits hepatitis and liver fibrosis. We evaluated the effects of HsA on liver X receptor (LXR)-mediated hepatic lipogenesis in vitro and in vivo. Up to 10 µM, HsA did not affect the viability of HepG2 and Huh7 cells. Pretreatment with 5-10 µM HsA significantly decreased the luciferase activity of the LXR response element, which was transactivated by T0901317, GW 3965, and LXRα/retinoid X receptor α overexpression. In addition, it significantly inhibited the mRNA expression of LXRα in HepG2 and Huh7 cells. It also suppressed the expression of sterol regulatory element-binding protein-1c and lipogenic genes and reduced the triglyceride accumulation triggered by T0901317. Intraperitoneal injection of HsA (5 and 10 mg/kg) in mice significantly alleviated the T0901317-mediated increases in hepatocyte diameter and the percentage of regions in hepatic parenchyma occupied by lipid droplets. Furthermore, HsA significantly attenuated hepatic triglyceride accumulation by restoring the impaired expression of LXRα-dependent lipogenic genes caused by T0901317. Therefore, based on its inhibition of the LXRα-dependent signaling pathway, HsA has prophylactic potential for steatosis. [BMB Reports 2021; 54(2): 106-111].


Subject(s)
Hydrocarbons, Fluorinated/antagonists & inhibitors , Lactones/pharmacology , Lipogenesis/drug effects , Liver/drug effects , Sesquiterpenes/pharmacology , Sulfonamides/antagonists & inhibitors , Cells, Cultured , Humans , Hydrocarbons, Fluorinated/pharmacology , Liver/metabolism , Liver X Receptors/antagonists & inhibitors , Liver X Receptors/genetics , Liver X Receptors/metabolism , Sulfonamides/pharmacology
7.
Article in English | MEDLINE | ID: mdl-32695211

ABSTRACT

Pericarpium zanthoxyli has been extensively used in traditional Oriental medicine to treat gastric disorders and has anti-inflammatory and antioxidative activities. Therefore, the present study examined a possible hepatoprotective effect of a P. zanthoxyli extract (PZE) and investigated the underlying molecular mechanisms. We employed an in vitro model of arachidonic acid (AA) + iron-induced hepatocyte damage and an in vivo model of CCl4-induced liver injury to assess the effects of PZE and evaluated the relevant molecular targets using biochemical assays, flow cytometry analysis, Western blot, and histopathological analysis. The PZE inhibited AA + iron-induced hepatotoxicity in HepG2 cells, improved mitochondrial dysfunction, and reversed an increase in the cellular H2O2 production and a decrease in the reduced GSH levels induced by AA + iron. Treatment with either 30 or 100 µg/ml PZE significantly increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, and the latter dose also increased the antioxidant response element- (ARE-) driven luciferase activity and enhanced the protein expressions of glutamate-cysteine ligase catalytic subunit and NAD(P)H:quinone oxidoreductase 1. In addition, treatment with 100 µg/ml PZE for 3 or 6 h increased the phosphorylation rates of Nrf2 and the extracellular signal-regulated kinase. In the in vivo experiment, oral treatment with both 100 and 300 mg/kg PZE inhibited the plasma aspartate aminotransferase activity, and the latter also inhibited the plasma alanine aminotransferase activity. In addition, both doses of PZE ameliorated the parenchymal degeneration and necrosis in the liver induced by CCl4 administration, which was associated with reduced expressions of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase, nitrotyrosine, and 4-hydroxynonenal by PZE. These findings suggest that PZE has protective effects against hepatotoxicity both in vitro and in vivo, which are mainly mediated via its antioxidant activity.

8.
Toxicol Appl Pharmacol ; 399: 115036, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32407927

ABSTRACT

Endoplasmic reticulum (ER) stress designates a cellular response to the accumulation of misfolded proteins, which is related to disease progression in the liver. Luteolin (3',4',5,7-tetrahydroxyflavone) is a phytochemical found frequently in medicinal herbs. Although luteolin has been reported to possess the therapeutic potential to prevent diverse stage of liver diseases, its role in hepatic ER stress has not been established. Thus, the present study aimed to determine the role of luteolin in tunicamycin (Tm)-induced ER stress, and to identify the relevant mechanisms involved in its hepatoprotective effects. In hepatocyte-derived cells and primary hepatocytes, luteolin significantly decreased Tm- or thapsigargin-mediated C/EBP homologous protein (CHOP) expression. In addition, luteolin reduced the activation of three canonical signaling pathways related to the unfolded protein response, and decreased mRNA levels of glucose-regulated protein 78, ER DNA J domain-containing protein 4, and asparagine synthetase. Luteolin also significantly upregulated sestrin 2 (SESN2), and luteolin-mediated CHOP inhibition was blocked in SESN2 (+/-) cells. Moreover, luteolin resulted in phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as increased nuclear Nrf2 expression. Deletion of the antioxidant response element in the human SESN2 promoter inhibited increased luciferase activation by luteolin, suggesting that Nrf2 is a critical transcription factor for luteolin-dependent SESN2 expression. In a Tm-mediated liver injury model, luteolin decreased serum alanine aminotransferase and aspartate aminotransferase activities, prevented degenerative changes and apoptosis of hepatocytes, and inhibited CHOP and glucose-regulated protein 78 expression in hepatic tissues. Therefore, luteolin may be an effective phytochemical to manage ER stress-related liver injury.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Liver/drug effects , Luteolin/pharmacology , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/metabolism , Tunicamycin/pharmacology , Animals , Antioxidant Response Elements/drug effects , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , HEK293 Cells , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred ICR , Phosphorylation/drug effects , Transcription Factor CHOP/metabolism , Unfolded Protein Response/drug effects
9.
Food Chem Toxicol ; 135: 111044, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31830547

ABSTRACT

Hemistepsin A (HsA), isolated from Hemistepta lyrata (Bunge) Bunge, has the ability to ameliorate hepatitis in mice. However, the effects of H. lyrata and HsA on other types of liver disease have not been explored. In this report, we investigated the effects of H. lyrata and HsA on liver fibrosis and the underlying molecular mechanisms in activated hepatic stellate cells (HSCs). Based on cell viability-guided isolation, we found HsA was the major natural product responsible for H. lyrata-mediated cytotoxicity in LX-2 cells. HsA significantly decreased the viability of LX-2 cells and primary activated HSCs, increased the binding of Annexin V, and altered the expression of apoptosis-related proteins, suggesting that HsA induces apoptosis in activated HSCs. HsA reduced the phosphorylation of IKKε and the transactivation of nuclear factor-κB (NF-κB). Moreover, HsA decreased the phosphorylation of Akt and its downstream signaling molecules. Transfection experiments suggested that inhibition of NF-κB or Akt is essential for HsA-induced apoptosis of HSCs. In a CCl4-induced liver fibrosis model, HsA administration significantly decreased ALT and AST activities. Furthermore, HsA attenuated CCl4-mediated collagen deposits and profibrogenic genes expression in hepatic tissue. Thus, HsA may serve as a natural product for managing liver fibrosis through inhibition of NF-κB/Akt-dependent signaling.


Subject(s)
Apoptosis/drug effects , Hepatic Stellate Cells/drug effects , Lactones/pharmacology , Liver Cirrhosis/prevention & control , Sesquiterpenes/pharmacology , Animals , Cell Line, Transformed , Chloroform/pharmacology , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , NF-kappa B/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
10.
J Ethnopharmacol ; 239: 111915, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31039428

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Adenophora triphylla var. japonica is frequently used as an oriental medicinal plant in Korea, China, and Japan for its anti-inflammatory, antitussive, and hepatoprotective effects. AIM OF THE STUDY: In the present study, the antitussive, expectorant, and anti-inflammatory effects of AR powder were investigated using animal models to evaluate their potential to treat respiratory disorders. MATERIALS AND METHODS: AR powder was administered orally to mice once daily for 11 days, at dose levels of 400, 200, and 100 mg/kg. Theobromine (TB), ambroxol (AM) and dexamethasone (DEXA) were used as standard drugs for antitussive effects, expectorant effects and anti-inflammatory effects, respectively. Evaluations of antitussive effects were based on changes in body weight, the number of cough responses and the histopathology of the lung and trachea. Expectorant effects were based on changes in the body weight, macroscopic observations of body surface redness, the mucous secretion of the trachea and histopathology of lung (secondary bronchus). Anti-inflammatory effects were based on changes in the body weight, macroscopic observations involving redness and edema of the treated ear, absolute and relative ear weights and histopathology of the treated ears. RESULTS: Allergic acute inflammation and coughing induced by exposure to NH4OH and symptoms of xylene-induced contact dermatitis were significantly inhibited by treatment with AR powder in a dose-dependent manner. Histological analyses revealed that AR powder decreased the OD values in trachea lavage fluid, reduced body surface redness, thicknesses of intrapulmonary secondary bronchus mucosa, and the number of PAS-positive mucous producing cells. Overall, AR powder administered at 200 mg/kg displayed superior antitussive and expectorant effects as compared to TB (50 mg/kg), and AM (250 mg/kg). At the highest concentration (400 mg/kg) AR powder displayed only moderately improved anti-inflammatory activities as compared to DEXA (1 mg/kg). CONCLUSION: The results obtained in this study suggest that AR powder exerts dose-dependent, favorable antitussive, expectorant, and anti-inflammatory activities achieved through modulation of the activity of mast cells and respiratory mucous production. Therefore, AR powder may serve as a therapeutic agent in various respiratory disorders, especially those that occur as a result of environmental toxicants.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antitussive Agents/therapeutic use , Campanulaceae , Cough/drug therapy , Dermatitis, Contact/drug therapy , Expectorants/therapeutic use , Ammonium Hydroxide , Animals , Cough/chemically induced , Cough/metabolism , Cough/pathology , Dermatitis, Contact/pathology , Lung/drug effects , Lung/pathology , Male , Mice, Inbred ICR , Mucus/drug effects , Mucus/metabolism , Plant Roots , Powders , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Skin/drug effects , Skin/pathology , Trachea/drug effects , Trachea/pathology , Xylenes
11.
Article in English | MEDLINE | ID: mdl-30245730

ABSTRACT

Anxiety during nicotine withdrawal (NicW) is a key risk factor for smoking relapse. Semen Ziziphi Spinosae (SZS), which is a prototypical hypnotic-sedative herb in Oriental medicine, has been clinically used to treat insomnia and general anxiety disorders for thousands of years. Thus, the present study evaluated the effects of the aqueous extract of SZS (AESZS) on NicW-induced anxiety in male rats that received subcutaneous administrations of nicotine (Nic) (0.4 mg/kg, twice a day) for 7 d followed by 4 d of withdrawal. During NicW, the rats received four intragastric treatments of AESZS (60 mg/kg/d or 180 mg/kg/d). AESZS dose-dependently attenuated NicW-induced anxiety-like behaviors in the elevated plus maze (EPM) tests and 180 mg/kg/d AESZS inhibited NicW-induced increases in plasma corticosterone. Additionally, the protein and mRNA expressions of corticotropin-releasing factor (CRF) and CRF type 1 receptor (CRF1R) increased in the central nucleus of the amygdala (CeA) during NicW, but these changes were suppressed by 180 mg/kg/d AESZS. A post-AESZS infusion of CRF into the CeA abolished the attenuation of anxiety by AESZS and 180 mg/kg/d AESZS suppressed NicW-induced increases in norepinephrine and 3-methoxy-4-hydroxy-phenylglycol levels in the CeA. The present results suggest that AESZS ameliorated NicW-induced anxiety via improvements in CRF/CRF1R and noradrenergic signaling in the CeA.

12.
Food Chem Toxicol ; 111: 176-188, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29129664

ABSTRACT

Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/ß and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H2O2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2.


Subject(s)
Inflammation/metabolism , Lactones/pharmacology , Macrophages/drug effects , NF-E2-Related Factor 2/metabolism , NF-kappa B/antagonists & inhibitors , Sesquiterpenes/pharmacology , Animals , Cell Survival , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Inflammation/drug therapy , Lactones/chemistry , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , NF-E2-Related Factor 2/genetics , Nitric Oxide , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Sesquiterpenes/chemistry , Signal Transduction
13.
Arch Pharm Res ; 40(9): 1071-1086, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28828587

ABSTRACT

Tryptanthrin (6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) has been reported to have a variety of pharmacological activities. Present study investigated the cytoprotective effects of tryptanthrin on arachidonic acid (AA) + iron-mediated oxidative stress and the molecular mechanisms responsible. In HepG2 cells, pretreatment with tryptanthrin inhibited the cytotoxic effect of AA + iron in a concentration-dependent manner. In addition, tryptanthrin prevented the changes in the levels of apoptosis-related proteins, and attenuated reactive oxygen species production, glutathione depletion, and mitochondrial membrane impairment induced by AA + iron. Mechanistic investigations showed that tryptanthrin increased the phosphorylations of AMP-activated protein kinase (AMPK) and of p38 mitogen-activated protein kinase (p38). Furthermore, inhibition of AMPK or p38 reduced the ability of tryptanthrin to prevent AA + iron-induced cell death and mitochondrial dysfunction. Transfection experiments using AMPK mutants indicated that p38 phosphorylation by tryptanthrin was dependent on AMPK activation. In a phenylhydrazine-induced acute liver injury model, tryptanthrin decreased serum levels of alanine aminotransferase, aspartate aminotransferase, and bilirubin in mice. Additionally, tryptanthrin reduced numbers of degenerating hepatocytes, infiltrating inflammatory cells, 4-hydroxynonenal-, and nitrotyrosine-positive cells in hepatic tissues. Thus, these results suggest tryptanthrin has therapeutic potential to protect cells from oxidative injury via AMPK-dependent p38 activation.


Subject(s)
Apoptosis/drug effects , Oxidative Stress/drug effects , Protective Agents/pharmacology , Quinazolines/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Arachidonic Acid/administration & dosage , Arachidonic Acid/metabolism , Dose-Response Relationship, Drug , Glutathione/metabolism , Hep G2 Cells , Humans , Iron/administration & dosage , Iron/metabolism , Male , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/metabolism , Protective Agents/administration & dosage , Quinazolines/administration & dosage , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Oncol Lett ; 14(2): 2207-2217, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28789443

ABSTRACT

Patinopecten yessoensis, is a species of scallop and a marine bivalve mollusk. In traditional East Asian medicine, scallop meat is used as a drug for the treatment of diabetes, pollakisuria, and indigestion. The present study was conducted in order to examine the potential anticancer effects of scallop flesh extract (SE) on MCF-7 human breast cancer cells. An MTT assay was used to evaluate cell viability and flow cytometry was used for the assessment of cell cycle distribution and apoptosis. The alteration in protein expression level was determined by western blot analysis, and the amounts of docosahexaenoic acid and eicosapentaenoic acid in the SE were measured by gas chromatography. SE inhibited the growth of MCF-7 human breast cancer cells in a dose-dependent manner by inducing G0/G1 phase arrest. The cell cycle arrest was associated with the upregulation of p53 and p21, and downregulation of G1 phase-associated cyclin D1/cyclin-dependent kinase (Cdk) 4 and cyclin E1/Cdk 2. In addition, SE-mediated cell cycle arrest was associated with the promotion of apoptosis, as indicated by the expression of apoptosis-associated proteins and changes in nuclear morphology. SE appeared to induce the mitochondrial apoptotic cascade, as indicated by a decreased expression of Bcl-2, activation of Bcl-2 associated X protein, release of cytochrome c, decrease in procaspase-3, and an increase in cleaved-poly (ADP-ribose) polymerase (PARP). Furthermore, the expression levels of Fas-associated via death domain and cleaved caspase-8 were increased in a SE dose-dependent manner. Taken together, these results suggest that the intrinsic and extrinsic pathways of apoptosis are associated with the anticancer effects of SE on MCF-7 cells. Thus, SE may be a suitable candidate for the treatment and prevention of human breast cancer.

15.
Article in English | MEDLINE | ID: mdl-28473864

ABSTRACT

The Buddleja officinalis Maxim. flower is used in traditional Chinese and Korean medicine to treat inflammation, vascular diseases, headache, and stroke, as well as enhance liver function. This research investigated the effects of B. officinalis Maxim. flower extract (BFE) on hepatotoxicity. The cytoprotective effects and mechanism of BFE against severe mitochondrial dysfunction and H2O2 production in hepatotoxicity induced by coadministration of arachidonic acid (AA) and iron were observed in the HepG2 cell line. In addition, we performed blood biochemical, histopathological, and histomorphometric analyses of mice with carbon tetrachloride- (CCl4-) induced acute liver damage. BFE inhibited the AA + iron-mediated hepatotoxicity of HepG2 cells. Moreover, it inhibited mitochondrial dysfunction, H2O2 production, and glutathione depletion mediated by AA + iron in the same cells. Meanwhile, the cytoprotective effects of BFE against oxidative stress were associated with the activation of AMP-activated protein kinase (AMPK). In particular, based on the histopathological observations, BFE (30 and 100 mg/kg) showed clear hepatoprotective effects against CCl4-induced acute hepatic damage. Furthermore, it inhibited 4-hydroxynonenal and nitrotyrosine immunoreactivity in hepatocytes. These results provide evidence that BFE has beneficial hepatoprotective effects against hepatic damage via the activation of AMPK pathway. Accordingly, BFE may have therapeutic potential for diverse liver disorders.

16.
J Ginseng Res ; 38(4): 256-63, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25379005

ABSTRACT

BACKGROUND: Korean Red Ginseng (KRG) is known to have antianxiety properties. This study was conducted to investigate the anxiolytic effects of KRG extract (KRGE) during ethanol withdrawal (EW) and the involvement of the mesoamygdaloid dopamine (DA) system in it. METHODS: Rats were treated with 3 g/kg/d of ethanol for 28 d, and subjected to 3 d of withdrawal. During EW, KRGE (20 mg/kg/d or 60 mg/kg/d, p.o.) was given to rats once/d for 3 d. Thirty min after the final dose of KRGE, anxiety-like behavior was evaluated in an elevated plus maze (EPM), and plasma corticosterone (CORT) levels were determined by a radioimmunoassay (RIA). In addition, concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) in the central nucleus of the amygdala (CeA) were also measured by high performance liquid chromatography (HPLC). RESULTS: The EPM test and RIA revealed KRGE inhibited anxiety-like behavior and the over secretion of plasma CORT during EW. Furthermore, the behavioral effect was blocked by a selective DA D2 receptor (D2R) antagonist (eticlopride) but not by a selective DA D1 receptor (D1R) antagonist (SCH23390). HPLC analyses showed KRGE reversed EW-induced decreases of DA and DOPAC in a dose-dependent way. Additionally, Western blotting and real-time polymerase chain reaction (PCR) assays showed that KRGE prevented the EW-induced reductions in tyrosine hydroxylase (TH) protein expression in the CeA and TH mRNA expression in the ventral tegmental area (VTA). CONCLUSION: These results suggest that KRGE has anxiolytic effects during EW by improving the mesoamygdaloid DA system.

17.
Nutrients ; 6(9): 3536-71, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25207824

ABSTRACT

The major components of tea may be significantly influenced according to the type of fermentation, and consequently the effects of different teas will differ. We examined whether green tea fermented with Aquilariae Lignum (fGT) shows a stronger anti-diabetic effect than unfermented green tea (GT) on mice with type 2 diabetes. To evaluate the anti-obesity effect of fGT, we assessed body weight, fecal excretion, serum leptin levels, exocrine pancreatic zymogen granule contents, and periovarian fat weight and adiponectin contents. Blood glucose levels, pancreatic weight, and numbers of pancreatic islet insulin- and glucagon-producing cells were determined to evaluate anti-hypoglycemic effects, while total cholesterol, triglyceride, and low- and high-density lipoprotein levels were determined to evaluate anti-hyperlipidemic effects. The antioxidant effect of fGT was detected by measuring malondialdehyde and glutathione contents and the activities of catalase and superoxide dismutase. fGT showed anti-obesity, anti-hypoglycemic, anti-hyperlipidemia, and antioxidant effects. Additionally, fGT exerted stronger anti-diabetic effects compared with GT. Collectively, these results suggested that fGT fermented with the appropriate amounts of Aquilariae Lignum (49:1) has a stronger effect compared with GT. Thus, fGT is a promising and potent new therapeutic agent for type 2 diabetes.


Subject(s)
Camellia sinensis , Diabetes Mellitus, Type 2/drug therapy , Fermentation , Hypoglycemic Agents/therapeutic use , Obesity/drug therapy , Phytotherapy , Thymelaeaceae , Adipose Tissue/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Type 2/blood , Female , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Lipids/blood , Mice, Inbred Strains , Obesity/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...