Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Fluids Barriers CNS ; 21(1): 35, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622710

ABSTRACT

Early breach of the blood-brain barrier (BBB) and consequently extravasation of blood-borne substances into the brain parenchyma is a common hallmark of ischemic stroke. Although BBB breakdown is associated with an increased risk of cerebral hemorrhage and poor clinical prognosis, the cause and mechanism of this process are largely unknown. The aim of this study was to establish an imaging and analysis protocol which enables investigation of the dynamics of BBB breach in relation to hemodynamic properties along the arteriovenous axis. Using longitudinal intravital two-photon imaging following photothrombotic induction of ischemic stroke through a cranial window, we were able to study the response of the cerebral vasculature to ischemia, from the early critical hours to the days/weeks after the infarct. We demonstrate that disruption of the BBB and hemodynamic parameters, including perturbed blood flow, can be studied at single-vessel resolution in the three-dimensional space as early as 30 min after vessel occlusion. Further, we show that this protocol permits longitudinal studies on the response of individual blood vessels to ischemia over time, thus enabling detection of (maladaptive) vascular remodeling such as intussusception, angiogenic sprouting and entanglement of vessel networks. Taken together, this in vivo two-photon imaging and analysis protocol will be useful in future studies investigating the molecular and cellular mechanisms, and the spatial contribution, of BBB breach to disease progression which might ultimately aid the development of new and more precise treatment strategies for ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Blood-Brain Barrier/metabolism , Stroke/metabolism , Brain Ischemia/diagnostic imaging , Brain Ischemia/metabolism , Ischemia/metabolism
2.
PLoS One ; 18(12): e0295692, 2023.
Article in English | MEDLINE | ID: mdl-38079411

ABSTRACT

The adoption of battery electric vehicles (BEVs) may significantly reduce greenhouse gas emissions caused by road transport. However, there is wide disagreement as to how soon battery electric vehicles will play a major role in overall transportation. Focusing on battery electric passenger cars, we analyze BEV adoption across 17 individual countries, Europe, and the World, and consistently find exponential growth trends. Modeling-based estimates of future adoption given past trends suggest system-wide adoption substantially faster than typical economic analyses have proposed so far. For instance, we estimate the majority of passenger cars in Europe to be electric by about 2031. Within regions, the predicted times of mass adoption are largely insensitive to model details. Despite significant differences in current electric fleet sizes across regions, their growth rates consistently indicate fast doubling times of approximately 15 months, hinting at radical economic and infrastructural consequences in the near future.


Subject(s)
Automobiles , Greenhouse Gases , Vehicle Emissions/analysis , Transportation , Electric Power Supplies , Motor Vehicles
3.
Nat Neurosci ; 26(7): 1245-1255, 2023 07.
Article in English | MEDLINE | ID: mdl-37349481

ABSTRACT

Excitatory projections from the lateral hypothalamic area (LHA) to the lateral habenula (LHb) drive aversive responses. We used patch-sequencing (Patch-seq) guided multimodal classification to define the structural and functional heterogeneity of the LHA-LHb pathway. Our classification identified six glutamatergic neuron types with unique electrophysiological properties, molecular profiles and projection patterns. We found that genetically defined LHA-LHb neurons signal distinct aspects of emotional or naturalistic behaviors, such as estrogen receptor 1-expressing (Esr1+) LHA-LHb neurons induce aversion, whereas neuropeptide Y-expressing (Npy+) LHA-LHb neurons control rearing behavior. Repeated optogenetic drive of Esr1+ LHA-LHb neurons induces a behaviorally persistent aversive state, and large-scale recordings showed a region-specific neural representation of the aversive signals in the prelimbic region of the prefrontal cortex. We further found that exposure to unpredictable mild shocks induced a sex-specific sensitivity to develop a stress state in female mice, which was associated with a specific shift in the intrinsic properties of bursting-type Esr1+ LHA-LHb neurons. In summary, we describe the diversity of LHA-LHb neuron types and provide evidence for the role of Esr1+ neurons in aversion and sexually dimorphic stress sensitivity.


Subject(s)
Habenula , Female , Mice , Animals , Habenula/physiology , Hypothalamus/physiology , Hypothalamic Area, Lateral , Neurons/physiology , Affect , Neural Pathways/physiology
4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108605

ABSTRACT

Proteins are essential macromolecules that carry out a plethora of biological functions. The thermal stability of proteins is an important property that affects their function and determines their suitability for various applications. However, current experimental approaches, primarily thermal proteome profiling, are expensive, labor-intensive, and have limited proteome and species coverage. To close the gap between available experimental data and sequence information, a novel protein thermal stability predictor called DeepSTABp has been developed. DeepSTABp uses a transformer-based protein language model for sequence embedding and state-of-the-art feature extraction in combination with other deep learning techniques for end-to-end protein melting temperature prediction. DeepSTABp can predict the thermal stability of a wide range of proteins, making it a powerful and efficient tool for large-scale prediction. The model captures the structural and biological properties that impact protein stability, and it allows for the identification of the structural features that contribute to protein stability. DeepSTABp is available to the public via a user-friendly web interface, making it accessible to researchers in various fields.


Subject(s)
Deep Learning , Proteome , Proteome/metabolism , Protein Stability
5.
J Sleep Res ; 32(3): e13777, 2023 06.
Article in English | MEDLINE | ID: mdl-36398708

ABSTRACT

Rapid eye movement (REM) sleep in rodents is defined by the presence of theta rhythm in the absence of movement. The amplitude and frequency of theta oscillations have been used to distinguish between tonic and phasic REM sleep. However, tonic REM sleep has not been further subdivided, although characteristics of network oscillations such as cross-frequency coupling between theta and gamma vary within this sub-state. Recently, it has been shown that theta-gamma coupling depends on an optimal breathing rate of ~5 Hz. The frequency of breathing varies strongly throughout REM sleep, and the duration of single REM sleep episodes ranges from several seconds to minutes, whereby short episodes predominate. Here we studied the relation between breathing frequency, accelerometer activity, and the length of REM sleep periods. We found that small movements detected with three-dimensional accelerometry positively correlate with breathing rate. Interestingly, breathing is slow in short REM sleep episodes, while faster respiration regimes exclusively occur after a certain delay in longer REM sleep episodes. Thus, merging REM sleep episodes of different lengths will result in a predominance of slow respiration due to the higher occurrence of short REM sleep periods. Moreover, our results reveal that not only do phasic REM sleep epochs predominantly occur during long REM sleep episodes, but that the long episodes also have faster theta and higher gamma activity. These observations suggest that REM sleep can be further divided from a physiological point of view depending on its duration. Higher levels of arousal during REM sleep, indicated by higher breathing rates, can only be captured in long REM sleep episodes.


Subject(s)
Arousal , Sleep, REM , Sleep, REM/physiology , Arousal/physiology , Theta Rhythm/physiology , Respiration
6.
Pflugers Arch ; 475(1): 65-76, 2023 01.
Article in English | MEDLINE | ID: mdl-35982341

ABSTRACT

Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.


Subject(s)
Cerebral Cortex , Hippocampus , Mice , Animals , Hippocampus/physiology , Parietal Lobe , Sleep, REM/physiology , Respiration , Theta Rhythm/physiology
7.
J Neurophysiol ; 127(3): 801-817, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35171722

ABSTRACT

The simultaneous, local integration of information from widespread brain regions is an essential feature of cortical computation and particularly relevant for multimodal association areas such as the posterior parietal cortex. Slow, rhythmic fluctuations in the local field potentials (LFPs) are assumed to constitute a global signal aiding interregional communication through the long-range synchronization of neuronal activity. Recent work demonstrated the brain-wide presence of a novel class of slow neuronal oscillations that are entrained by nasal respiration. However, whether there are differences in the influence of the respiration-entrained rhythm (RR) and the endogenous theta (θ) rhythm over local networks is unknown. In this work, we aimed at characterizing the impact of both classes of oscillations on neuronal activity in the posterior parietal cortex of mice. We focused our investigations on a θ-dominated state (rapid eye movement sleep) and an RR-dominated state (wake immobility). Using linear silicon probes implanted along the dorsoventral cortical axis, we found that the LFP-depth distributions of both rhythms show differences in amplitude and coherence but no phase shift. Using tetrode recordings, we demonstrate that a substantial fraction of parietal neurons is modulated by either RR or θ or even by both rhythms simultaneously. Interestingly, the phase and cortical depth dependence of spike-field coupling differ for these oscillations. We further show through intracellular recordings in urethane-anesthetized mice that synaptic inhibition is likely to play a role in generating respiration-entrainment at the membrane potential level. We conclude that θ and respiration differentially affect neuronal activity in the parietal cortex.NEW & NOTEWORTHY Nasal respiration generates a rhythmic signal that entrains large portions of the mammalian brain into respiration-coupled field potentials. Here, we report the simultaneous presence of respiratory rhythm (RR) and θ oscillations in the parietal association cortex of mice. Despite their overlapping frequencies, both rhythms differ in their state-dependent power and differentially entrain the discharge behavior of units. We conclude that network activity in the parietal cortex is synchronized by two different physiological oscillation patterns.


Subject(s)
Respiration , Theta Rhythm , Animals , Brain/physiology , Mammals , Mice , Parietal Lobe , Sleep, REM/physiology , Theta Rhythm/physiology
8.
Int Rev Neurobiol ; 158: 337-372, 2021.
Article in English | MEDLINE | ID: mdl-33785151

ABSTRACT

The mouse prefrontal cortex (PFC) encompasses a collection of agranual brain regions in the rostral neocortex and is considered to be critically involved in the neuronal computations underlying intentional behaviors. Flexible behavioral responses demand coordinated integration of sensory inputs with state, goal and memory information in brain-wide neuronal networks. Neuronal oscillations are proposed to provide a temporal scaffold for coordination of neuronal network activity and routing of information. In the present book chapter, we review findings on the role neuronal oscillations in prefrontal functioning, with a specific focus on research in mice. We discuss discoveries pertaining to local prefrontal processing, as well to interactions with other brain regions. We also discuss how the recent discovery of brain-wide respiration-entrained rhythms (RR) warrant re-evaluation of certain findings on slow oscillations (<10Hz) in prefrontal functioning.


Subject(s)
Neurons , Prefrontal Cortex , Animals , Mice , Neurons/physiology , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...