Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(15): 10653-10661, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567327

ABSTRACT

Self-reporting systems automatically indicate damaged or corroded surfaces via color changes or fluorescence. In this study, a novel reusable self-reporting system is developed by exploiting the reversibility of a donor-acceptor Stenhouse adduct (DASA). The synthesized DASA precursor exhibits a color change when damaged upon reaction with diethylamine, and returns to its colorless form upon irradiation with visible light. Microcapsules are synthesized with a core comprising styrene and the DASA precursor, along with a shell formed of urea and formaldehyde. The optimal particle size and shell thickness of the microcapsules are 225 µm and 0.17 µm, respectively. The DASA precursor-containing microcapsules are embedded in a PEG gel matrix with secondary amine groups. This coating system, initially colorless, exhibits a color change, becoming pink after being damaged by scratching due to the reaction between the DASA precursor released from ruptured microcapsules with the secondary amine groups of the PEG gel, thus demonstrating self-reporting characteristics. Furthermore, the colored surface is restored to its initial colorless state by irradiation with visible light for 1.5 hours, demonstrating the reusability of the self-reporting system.

2.
ACS Appl Mater Interfaces ; 16(1): 1511-1520, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38129176

ABSTRACT

Given the substantial environmental challenge posed by global plastic waste, recycling technology for thermosetting polymers has become a huge research topic in the polymer industry. Covalent adaptive networks (CANs), which can reversibly dissociate and reconstruct their network structure, represent a key technology for the self-healing, reprocessing, and recycling of thermosetting polymers. In the present study, we introduce a new series of polyurethane CANs whose network structure can dissociate via the self-catalyzed formation of dithiolane from the CANs' polydisulfide linkages when the CANs are treated in N,N-dimethylformamide (DMF) or dimethyl sulfoxide at 60 °C for 1 h. More interestingly, we found that this network dissociation even occurs in tetrahydrofuran-DMF solvent mixtures with low DMF concentrations. This feature enables a reduction in the use of high-boiling, toxic polar aprotic solvents. The dissociated network structure of the CANs was reconstructed under UV light at 365 nm with a high yield via ring-opening polydisulfide linkage formation from dithiolane pendant groups. These CAN films, which were prepared by a sequential organic synthesis and polymerization process, exhibited high thermal stability and good mechanical properties, recyclability, and self-healing performance. When lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt was added to the CAN films, the films exhibited a maximum ion conductivity of 7.48 × 10-4 S cm-1 because of the contribution of the high concentration of the pendant ethylene carbonate group in the CANs. The ion-conducting CAN films also showed excellent recyclability and a self-healing performance.

3.
RSC Adv ; 13(51): 36364-36372, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38099255

ABSTRACT

Using o-imino isourea, three photo- and thermal dual-responsive radical initiators dicyheDCC, CyheDCC, and BnDCC were systematically developed and synthesized. By adding an aromatic ring to the free radical initiators, the ultraviolet-visible absorption was redshifted, and the absorption coefficient was increased. Compared with other initiators, BnphDCC exhibited an exceptional photoinitiation rate under photo-differential scanning calorimetry (DSC) and a high absorption coefficient (ε = 15 420 M-1 cm-1). Therefore, it is an appropriate potential photoinitiator. DicyheDCC, which was composed of a cyclic hydrocarbon, exhibited rapid thermal initiation (Tpeak = 82 °C) during thermal DSC, making it a valuable thermal radical initiator. Because of the low stiffness of the N-O link in radical initiators, density functional theory predicts that the aliphatic ring has a significantly lower enthalpy than the aromatic ring. Moreover, in this study, CyhephDCC and BnphDCC, as dual-responsive radical initiators, indicated the potential for a photo- and heat dual-curing system through the universal free-radical polymerization of acrylates. These significant discoveries may be useful for developing efficient and diversified polymer network systems that require synergistic photo- and thermal effects.

4.
RSC Adv ; 13(44): 31092-31100, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37881755

ABSTRACT

Control of polymer topologies is essential to determine their unique physical properties and potential applications. The polymer topologies can have a critical effect on pigment dispersion owing to their unique architectures; however, studies using polymer topologies on pigment dispersion in aqueous systems are scarce. Thus, this study proposes various topologies of polyether-based waterborne synergists, such as linear, hyperbranched, and branched cyclic structures. Specifically, we applied branched types of polyglycidols (PGs) as a synergist to provide polymer topology-dependent dispersibility for the surface-modification of Red 170 particles through adsorption and steric hindrance. The topology-controlled PG synergists (PGSs) were successfully prepared by post-polymerization modification with phthalimide and benzoyl groups. Particularly, the branched types of PGSs, branched cyclic PGS (bc-PGS), and hyperbranched PGS (hb-PGS) exhibited improved dispersibility through adsorption on top of the pigment, interaction between dispersant (BYK 190) and pigment, and steric effect. Surprisingly, hb-PGS conferred the Red 170 pigment particles with superior storage stability than that of bc-PGS despite their similar structural features. This study suggests the widespread potential application of PGSs as waterborne synergists for various dispersion applications.

5.
Molecules ; 28(9)2023 04 29.
Article in English | MEDLINE | ID: mdl-37175223

ABSTRACT

Wastewater management is of considerable economic and environmental importance for the dyeing industry. Digital textile printing (DTP), which is based on sublimation transfer and does not generate wastewater, is currently being explored as an inkjet-based method of printing colorants onto fabric. It finds wide industrial applications with most poly(ethylene terephthalate) (PET) and nylon fibers. However, for additional industrial applications, it is necessary to use natural fibers, such as cotton. Therefore, to expand the applicability of DTP, it is essential to develop a novel reactive disperse dye that can interact with the fabric. In this study, we introduced a blocked isocyanate functional group into the dye to enhance binding to the fabric. The effect of sublimation transfer on fabrics as a function of temperature was compared using the newly synthesized reactive disperse dyes with different blocking groups based on pyrazole derivatives, such as pyrazole (Py), di-methylpyrazole (DMPy), and di-tert-butylpyrazole (DtBPy). Fabrics coated with the new reactive disperse dyes, including PET, nylon, and cotton, were printed at 190 °C, 200 °C, and 210 °C using thermal transfer equipment. In the case of the synthesized DHP-A dye on cotton at 210 °C, the color strength was 2.1, which was higher than that of commercial dyes and other synthesized dyes, such as DMP-A and DTP-A. The fastness values of the synthesized DHP-A were measured on cotton, and it was found that the washing and light fastness values on cotton are higher than those of commercial dyes. This study confirmed the possibility of introducing isocyanate groups into reactive disperse dyes.

6.
ACS Appl Mater Interfaces ; 15(6): 8510-8520, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36722695

ABSTRACT

Recently, self-healing materials have evolved to recover specific functions such as electronic, magnetic, acoustic, structural or hierarchical, and biological properties. In particular, the development of self-healing protection coatings that can be applied to lens components in vision systems such as augmented reality glasses, actuators, and image and time-of-flight sensors has received intensive attention from the industry. In the present study, we designed polythiourethane dynamic networks containing a photothermal N-butyl-substituted diimmonium borate dye to demonstrate their potential applications in self-healing protection coatings for the optical components of vision systems. The optimized self-healing coating exhibited a high transmittance (∼95% in the visible-light region), tunable refractive index (up to 1.6), a moderate Abbe number (∼35), and high surface hardness (>200 MPa). When subjected to near-infrared (NIR) radiation (1064 nm), the surface temperature of the coating increased to 75 °C via the photothermal effect and self-healing of the scratched coatings occurred via a dynamic thiourethane exchange reaction. The coating was applied to a lens protector, and its self-healing performance was demonstrated. The light signal distorted by the scratched surface of the coating was perfectly restored after NIR-induced self-healing. The photoinduced self-healing process can also autonomously occur under sunlight with low energy consumption.

7.
J Nanosci Nanotechnol ; 21(7): 4037-4041, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33715740

ABSTRACT

Molecular size of OLED emitting materials is nano-metric size and when it is applied to the electric field it emits the light based on the energy conversion result. As new green fluorescent emitters, N,N,N',N'-Tetra-m-tolyl-anthracene-9,10-diamine (m-Me-TAD) and N,N,N',N'-Tetra-p-tolyl-anthracene-9,10-diamine (p-Me-TAD) were synthesized and the properties were evaluated. In solution state, photoluminescence (PL) maximum wavelength is 517 nm for m-Me-TAD and 529 nm for p-Me-TAD. In electroluminescence (EL) spectra, EL maximum wavelength of m-Me-TAD is 518 nm and p-Me-TAD is 533 nm. The doped device using m-Me-TAD as green fluorescent dopant exhibited current efficiency (CE) of 17.41 cd/A and external quantum efficiency (EQE) of 7.41%. The doped device with p-Me-TAD was optimized in order to achieve a green OLED with high efficiency.

8.
J Nanosci Nanotechnol ; 19(8): 4799-4802, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30913791

ABSTRACT

We have synthesized green fluorescent emitters of N9,N9,N10,N10-tetraphenylanthracene-9,10-diamine (TAD) and N9,N9,N10,N10-tetra-o-tolylanthracene-9,10-diamine (oMe-TAD) including anthracene and diphenylamine moiety and evaluated properties of compounds. The methyl groups were introduced to the diphenylamine to prevent molecular aggregation of the dopant and reduce self-quenching through steric hindrance of molecular structure. In solution state, photoluminescence (PL) maximum wavelength is 508 nm for TAD and 519 nm for oMe-TAD. In film state, PL maximum wavelength is 518 nm for TAD and 527 nm for oMe-TAD. In electroluminescence (EL) spectra, EL maximum wavelength of TAD is 508 nm and EL maximum wavelength of oMe-TAD is 522 nm. The doped device using TAD as green fluorescent dopant exhibited CE of 17.7 cd/A, PE of 7.74 lm/W, and EQE of 6.11%. The doped device using oMe-TAD as dopant exhibited CE of 19.8 cd/A, PE of 7.23 lm/W, and EQE of 5.97%.

9.
J Nanosci Nanotechnol ; 19(2): 1141-1144, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30360219

ABSTRACT

White OLED (WOLED) devices were fabricated using blue emitting materials, TP-AA-TP, TP-AA-TPB, and TPB-AA-TPB, and yellow emitting material polyphenylenevinylene derivative (PDY 132). Three devices were fabricated with the following structure: ITO/PEDOT:PSS (50 nm)/PDY-132 (40 nm)/NPB (10 nm)/Blue EML (30 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). PDY-132 was used by spin coating, and then three blue fluorescent materials were used by vapor deposition to form a white light emitting device. The color coordinates of WOLED using TP-AA-TP, TP-AA-TPB and TPB-AA-TPB were (0.291, 0.317), (0.317, 0.371) and (0.345, 0.457), respectively. Device using TP-AA-TP as blue emitting material showed the highest efficiencies at 10 mA/cm², L.E of 5.58 cd/A, P.E of 2.16 lm/W and E.Q.E of 2.96%.

10.
ACS Appl Mater Interfaces ; 10(36): 30022-30028, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30145879

ABSTRACT

In this study, four emitters of blue light are synthesized by selecting pyrene with its high photoluminescence quantum yield (PLQY) as the core group and variants of the electron-donating diphenylamine (DPA) as side groups. The four compounds have different numbers, sizes, and substitution positions of alkyl groups on the DPA. Each of the four compounds when doped in OLED devices shows a high current efficiency (CE) of over 7 cd A-1 and a high external quantum efficiency (EQE) of over 7.5%. In addition, the compounds yield electroluminescence (EL) spectra showing peaks with narrow full width at half-maximum (fwhm) values of 37-40 nm and hence indicative of high color purity. Moreover, one compound N1,N6-bis(5-( tert-butyl)-2-methylphenyl)-N1,N6-bis(2,4-dimethylphenyl)pyrene-1,6-diamine (3Me-1Bu-TPPDA), shows a very high EQE of 9.25% and a very long lifetime with an LT95 of 471 h.

11.
J Nanosci Nanotechnol ; 18(2): 1336-1338, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29448586

ABSTRACT

Minimizing ink droplet and self-dispersed pigment mixture are becoming hot issues for high resolution of inkjet printing. New synergist including sulfonic acid group of PY-74 was suggested and synthesized. Pigment itself did not show water solubility but new synergist, SY-11 exhibited good solubility in water and organic solvents such as DMSO and DMF. When aqueous pigment ink was prepared with SY-11, storage stability of the ink has been remained for 7 days under periodically repeated heating and cooling conditions. Particle size of formulated ink was around 150 nm.

12.
J Nanosci Nanotechnol ; 18(3): 2162-2165, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448736

ABSTRACT

New three emitting compounds, AK-1, AK-2 and AK-3 including diazocine moiety were synthesized through Suzuki-coupling reaction. Physical properties such as optical, electroluminescent properties were investigated. UV-visible spectrum of AK-1, AK-2 and AK-3 in film state showed maximum 392, 393 and 401 nm. PL spectrum of AK-1, AK-2 and AK-3 showed maximum emission wavelength of 472, 473 and 435 nm. Three compounds were used as EML in OLED device: ITO/2-TNATA (60 nm)/NPB (15 nm)/EML (35 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). AK-3 OLED device showed C.I.E value of (0.18, 0.26) and luminance efficiency of 0.51 cd/A at 10 mA/cm2. New derivatives including diazocine moiety were introduced as OLED emitting material and the EL efficiency was increased by the proper combination of core and side group.

13.
J Nanosci Nanotechnol ; 18(3): 2166-2170, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448737

ABSTRACT

New blue emitting materials based on dual core concept, TP-AF-TP and TP-HAF-TP were synthesized through boronylation and Suzuki coupling reactions. In the thin film state, TP-AF-TP and TP- HAF-TP exhibited maximum PL values at 445 and 440 nm, respectively. A non-doped OLED device based on TP-AF-TP and TP-HAF-TP showed current efficiency of 3.16 and 2.67 cd/A, respectively. TP-AF-TP exhibited a higher EL efficiency than that of TP-HAF-TP.

14.
J Nanosci Nanotechnol ; 18(3): 2171-2174, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448738

ABSTRACT

AK-1NA and AK-2NA based on dibenzo-diazocine and anthracene moieties were designed and synthesized. Normalized UV-visible spectra of AK-1NA and AK-2NA in film state showed maximum absorption wavelength of 394 and 393 nm. PL spectra of AK-1NA and AK-2NA showed maximum emission wavelength of 429 and 444 nm. At a current density of 10 mA/cm2, OLED devices of AK-1NA and AK-2NA exhibited luminance efficiency of 2.39 and 1.50 cd/A, power efficiency of 1.01 and 0.81 lm/W. Also, OLED devices of AK-1NA and AK-2NA devices exhibited CIE(x, y ) of (0.16, 0.22) and (0.23, 0.42).

15.
J Org Chem ; 83(5): 2640-2646, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29457900

ABSTRACT

A new deep-blue chromophore containing a three-dimensionally (3D) shaped CS core composed of fused chrysene and spirofluorene units is synthesized. A pair of m-terphenyl (TP) units is also substituted onto the CS core at two different sets of positions to form two additional compounds: CS-TPTP and TP-CS-TP. The TP-CS-TP compound showed the highest efficiency with an external quantum efficiency (EQE) of 3.05% and Commission Internationale de L'Eclairage coordinates (CIE) of (0.148, 0.098) corresponding to the emission of blue light. This approach for forming a new chromophore is expected to lead to the development of functional organic materials with excellent characteristics.

16.
J Nanosci Nanotechnol ; 16(2): 1748-51, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433663

ABSTRACT

Recently, interest of polymer light-emitting diode (PLED) fabricated from conjugated polymer has augmented because PLED has advantage property that is well-suited to flexible lighting and solution processed device. In this presentation, we suggest a new polymer host based on phenanthrene, poly(9-(3-Vinyl-phenyl)-phenanthrene) (PVPP). It can be easily synthesized through simple synthetic methods which are Suzuki and Wittig reactions. PVPP film can be obtained from spin coating with solution used by common solvent. It exhibited PL maximum value of 381 nm and broad PL spectrum. Energy transfer smoothly occurred when the three dopants for green, red and yellow were used in PVPP.


Subject(s)
Luminescence , Phenanthrenes/chemistry , Phenanthrenes/chemical synthesis , Povidone/analogs & derivatives , Povidone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...