Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cells ; 47(4): 100048, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521352

ABSTRACT

Observing the activity of neural networks is critical for the identification of learning and memory processes, as well as abnormal activities of neural circuits in disease, particularly for the purpose of tracking disease progression. Methodologies for describing the activity history of neural networks using molecular biology techniques first utilized genes expressed by active neurons, followed by the application of recently developed techniques including optogenetics and incorporation of insights garnered from other disciplines, including chemistry and physics. In this review, we will discuss ways in which molecular biological techniques used to describe the activity of neural networks have evolved along with the potential for future development.


Subject(s)
Neurons , Optogenetics , Animals , Humans , Nerve Net , Neurons/physiology , Optogenetics/methods
2.
JMIR Mhealth Uhealth ; 11: e50983, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37917155

ABSTRACT

BACKGROUND: Consumer sleep trackers (CSTs) have gained significant popularity because they enable individuals to conveniently monitor and analyze their sleep. However, limited studies have comprehensively validated the performance of widely used CSTs. Our study therefore investigated popular CSTs based on various biosignals and algorithms by assessing the agreement with polysomnography. OBJECTIVE: This study aimed to validate the accuracy of various types of CSTs through a comparison with in-lab polysomnography. Additionally, by including widely used CSTs and conducting a multicenter study with a large sample size, this study seeks to provide comprehensive insights into the performance and applicability of these CSTs for sleep monitoring in a hospital environment. METHODS: The study analyzed 11 commercially available CSTs, including 5 wearables (Google Pixel Watch, Galaxy Watch 5, Fitbit Sense 2, Apple Watch 8, and Oura Ring 3), 3 nearables (Withings Sleep Tracking Mat, Google Nest Hub 2, and Amazon Halo Rise), and 3 airables (SleepRoutine, SleepScore, and Pillow). The 11 CSTs were divided into 2 groups, ensuring maximum inclusion while avoiding interference between the CSTs within each group. Each group (comprising 8 CSTs) was also compared via polysomnography. RESULTS: The study enrolled 75 participants from a tertiary hospital and a primary sleep-specialized clinic in Korea. Across the 2 centers, we collected a total of 3890 hours of sleep sessions based on 11 CSTs, along with 543 hours of polysomnography recordings. Each CST sleep recording covered an average of 353 hours. We analyzed a total of 349,114 epochs from the 11 CSTs compared with polysomnography, where epoch-by-epoch agreement in sleep stage classification showed substantial performance variation. More specifically, the highest macro F1 score was 0.69, while the lowest macro F1 score was 0.26. Various sleep trackers exhibited diverse performances across sleep stages, with SleepRoutine excelling in the wake and rapid eye movement stages, and wearables like Google Pixel Watch and Fitbit Sense 2 showing superiority in the deep stage. There was a distinct trend in sleep measure estimation according to the type of device. Wearables showed high proportional bias in sleep efficiency, while nearables exhibited high proportional bias in sleep latency. Subgroup analyses of sleep trackers revealed variations in macro F1 scores based on factors, such as BMI, sleep efficiency, and apnea-hypopnea index, while the differences between male and female subgroups were minimal. CONCLUSIONS: Our study showed that among the 11 CSTs examined, specific CSTs showed substantial agreement with polysomnography, indicating their potential application in sleep monitoring, while other CSTs were partially consistent with polysomnography. This study offers insights into the strengths of CSTs within the 3 different classes for individuals interested in wellness who wish to understand and proactively manage their own sleep.


Subject(s)
Sleep Stages , Sleep , Humans , Female , Male , Prospective Studies , Polysomnography , Fitness Trackers
3.
J Med Internet Res ; 25: e46216, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37261889

ABSTRACT

BACKGROUND: The growing public interest and awareness regarding the significance of sleep is driving the demand for sleep monitoring at home. In addition to various commercially available wearable and nearable devices, sound-based sleep staging via deep learning is emerging as a decent alternative for their convenience and potential accuracy. However, sound-based sleep staging has only been studied using in-laboratory sound data. In real-world sleep environments (homes), there is abundant background noise, in contrast to quiet, controlled environments such as laboratories. The use of sound-based sleep staging at homes has not been investigated while it is essential for practical use on a daily basis. Challenges are the lack of and the expected huge expense of acquiring a sufficient size of home data annotated with sleep stages to train a large-scale neural network. OBJECTIVE: This study aims to develop and validate a deep learning method to perform sound-based sleep staging using audio recordings achieved from various uncontrolled home environments. METHODS: To overcome the limitation of lacking home data with known sleep stages, we adopted advanced training techniques and combined home data with hospital data. The training of the model consisted of 3 components: (1) the original supervised learning using 812 pairs of hospital polysomnography (PSG) and audio recordings, and the 2 newly adopted components; (2) transfer learning from hospital to home sounds by adding 829 smartphone audio recordings at home; and (3) consistency training using augmented hospital sound data. Augmented data were created by adding 8255 home noise data to hospital audio recordings. Besides, an independent test set was built by collecting 45 pairs of overnight PSG and smartphone audio recording at homes to examine the performance of the trained model. RESULTS: The accuracy of the model was 76.2% (63.4% for wake, 64.9% for rapid-eye movement [REM], and 83.6% for non-REM) for our test set. The macro F1-score and mean per-class sensitivity were 0.714 and 0.706, respectively. The performance was robust across demographic groups such as age, gender, BMI, or sleep apnea severity (accuracy 73.4%-79.4%). In the ablation study, we evaluated the contribution of each component. While the supervised learning alone achieved accuracy of 69.2% on home sound data, adding consistency training to the supervised learning helped increase the accuracy to a larger degree (+4.3%) than adding transfer learning (+0.1%). The best performance was shown when both transfer learning and consistency training were adopted (+7.0%). CONCLUSIONS: This study shows that sound-based sleep staging is feasible for home use. By adopting 2 advanced techniques (transfer learning and consistency training) the deep learning model robustly predicts sleep stages using sounds recorded at various uncontrolled home environments, without using any special equipment but smartphones only.


Subject(s)
Deep Learning , Smartphone , Humans , Sound Recordings , Home Environment , Sleep Stages , Sleep
4.
Nat Sci Sleep ; 14: 1187-1201, 2022.
Article in English | MEDLINE | ID: mdl-35783665

ABSTRACT

Purpose: Nocturnal sounds contain numerous information and are easily obtainable by a non-contact manner. Sleep staging using nocturnal sounds recorded from common mobile devices may allow daily at-home sleep tracking. The objective of this study is to introduce an end-to-end (sound-to-sleep stages) deep learning model for sound-based sleep staging designed to work with audio from microphone chips, which are essential in mobile devices such as modern smartphones. Patients and Methods: Two different audio datasets were used: audio data routinely recorded by a solitary microphone chip during polysomnography (PSG dataset, N=1154) and audio data recorded by a smartphone (smartphone dataset, N=327). The audio was converted into Mel spectrogram to detect latent temporal frequency patterns of breathing and body movement from ambient noise. The proposed neural network model learns to first extract features from each 30-second epoch and then analyze inter-epoch relationships of extracted features to finally classify the epochs into sleep stages. Results: Our model achieved 70% epoch-by-epoch agreement for 4-class (wake, light, deep, REM) sleep stage classification and robust performance across various signal-to-noise conditions. The model performance was not considerably affected by sleep apnea or periodic limb movement. External validation with smartphone dataset also showed 68% epoch-by-epoch agreement. Conclusion: The proposed end-to-end deep learning model shows potential of low-quality sounds recorded from microphone chips to be utilized for sleep staging. Future study using nocturnal sounds recorded from mobile devices at home environment may further confirm the use of mobile device recording as an at-home sleep tracker.

5.
Nat Sci Sleep ; 13: 2239-2250, 2021.
Article in English | MEDLINE | ID: mdl-35002345

ABSTRACT

STUDY OBJECTIVES: Automated sleep stage scoring is not yet vigorously used in practice because of the black-box nature and the risk of wrong predictions. The objective of this study was to introduce a confidence-based framework to detect the possibly wrong predictions that would inform clinicians about which epochs would require a manual review and investigate the potential to improve accuracy for automated sleep stage scoring. METHODS: We used 702 polysomnography studies from a local clinical dataset (SNUBH dataset) and 2804 from an open dataset (SHHS dataset) for experiments. We adapted the state-of-the-art TinySleepNet architecture to train the classifier and modified the ConfidNet architecture to train an auxiliary confidence model. For the confidence model, we developed a novel method, Dropout Correct Rate (DCR), and the performance of it was compared with other existing methods. RESULTS: Confidence estimates (0.754) reflected accuracy (0.758) well in general. The best performance for differentiating correct and wrong predictions was shown when using the DCR method (AUROC: 0.812) compared to the existing approaches which largely failed to detect wrong predictions. By reviewing only 20% of epochs that received the lowest confidence values, the overall accuracy of sleep stage scoring was improved from 76% to 87%. For patients with reduced accuracy (ie, individuals with obesity or severe sleep apnea), the possible improvement range after applying confidence estimation was even greater. CONCLUSION: To the best of our knowledge, this is the first study applying confidence estimation on automated sleep stage scoring. Reliable confidence estimates by the DCR method help screen out most of the wrong predictions, which would increase the reliability and interpretability of automated sleep stage scoring.

6.
Sci Rep ; 6: 39136, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27966663

ABSTRACT

This paper reports the synthetic route of 3-D network shape α-Fe2O3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe2O3, particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe2O3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil.

7.
Angew Chem Int Ed Engl ; 52(38): 10014-7, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23913751

ABSTRACT

Multiammonium surfactants exhibited a remarkable capping effect for zeolite synthesis in the forms of nanoparticles, nanorods, and nanosponges in cases where common monovalent surfactants failed. A nanorod-shaped mordenite zeolite synthesized in this manner showed significantly enhanced catalytic lifetimes in acid-catalyzed cumene synthesis reactions.

8.
Science ; 333(6040): 328-32, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21764745

ABSTRACT

Crystalline mesoporous molecular sieves have long been sought as solid acid catalysts for organic reactions involving large molecules. We synthesized a series of mesoporous molecular sieves that possess crystalline microporous walls with zeolitelike frameworks, extending the application of zeolites to the mesoporous range of 2 to 50 nanometers. Hexagonally ordered or disordered mesopores are generated by surfactant aggregates, whereas multiple cationic moieties in the surfactant head groups direct the crystallization of microporous aluminosilicate frameworks. The wall thicknesses, framework topologies, and mesopore sizes can be controlled with different surfactants. The molecular sieves are highly active as catalysts for various acid-catalyzed reactions of bulky molecular substrates, compared with conventional zeolites and ordered mesoporous amorphous materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...