Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Mol Cancer ; 23(1): 45, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424542

ABSTRACT

BACKGROUND: In the myeloid compartment of the tumor microenvironment, CD244 signaling has been implicated in immunosuppressive phenotype of monocytes. However, the precise molecular mechanism and contribution of CD244 to tumor immunity in monocytes/macrophages remains elusive due to the co-existing lymphoid cells expressing CD244. METHODS: To directly assess the role of CD244 in tumor-associated macrophages, monocyte-lineage-specific CD244-deficient mice were generated using cre-lox recombination and challenged with B16F10 melanoma. The phenotype and function of tumor-infiltrating macrophages along with antigen-specific CD8 T cells were analyzed by flow cytometry and single cell RNA sequencing data analysis, and the molecular mechanism underlying anti-tumorigenic macrophage differentiation, antigen presentation, phagocytosis was investigated ex vivo. Finally, the clinical feasibility of CD244-negative monocytes as a therapeutic modality in melanoma was confirmed by adoptive transfer experiments. RESULTS: CD244fl/flLysMcre mice demonstrated a significant reduction in tumor volume (61% relative to that of the CD244fl/fl control group) 14 days after tumor implantation. Within tumor mass, CD244fl/flLysMcre mice also showed higher percentages of Ly6Clow macrophages, along with elevated gp100+IFN-γ+ CD8 T cells. Flow cytometry and RNA sequencing data demonstrated that ER stress resulted in increased CD244 expression on monocytes. This, in turn, impeded the generation of anti-tumorigenic Ly6Clow macrophages, phagocytosis and MHC-I antigen presentation by suppressing autophagy pathways. Combining anti-PD-L1 antibody with CD244-/- bone marrow-derived macrophages markedly improved tumor rejection compared to the anti-PD-L1 antibody alone or in combination with wild-type macrophages. Consistent with the murine data, transcriptome analysis of human melanoma tissue single-cell RNA-sequencing dataset revealed close association between CD244 and the inhibition of macrophage maturation and function. Furthermore, the presence of CD244-negative monocytes/macrophages significantly increased patient survival in primary and metastatic tumors. CONCLUSION: Our study highlights the novel role of CD244 on monocytes/macrophages in restraining anti-tumorigenic macrophage generation and tumor antigen-specific T cell response in melanoma. Importantly, our findings suggest that CD244-deficient macrophages could potentially be used as a therapeutic agent in combination with immune checkpoint inhibitors. Furthermore, CD244 expression in monocyte-lineage cells serve as a prognostic marker in cancer patients.


Subject(s)
Melanoma , Monocytes , Humans , Animals , Mice , Monocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Macrophages/metabolism , CD8-Positive T-Lymphocytes , Carcinogenesis/metabolism , Tumor Microenvironment , Signaling Lymphocytic Activation Molecule Family/metabolism
2.
Exp Mol Med ; 55(11): 2308-2319, 2023 11.
Article in English | MEDLINE | ID: mdl-37907742

ABSTRACT

Solid tumors are complex entities that actively shape their microenvironment to create a supportive environment for their own growth. Angiogenesis and immune suppression are two key characteristics of this tumor microenvironment. Despite attempts to deplete tumor blood vessels using antiangiogenic drugs, extensive vessel pruning has shown limited efficacy. Instead, a targeted approach involving the judicious use of drugs at specific time points can normalize the function and structure of tumor vessels, leading to improved outcomes when combined with other anticancer therapies. Additionally, normalizing the immune microenvironment by suppressing immunosuppressive cells and activating immunostimulatory cells has shown promise in suppressing tumor growth and improving overall survival. Based on these findings, many studies have been conducted to normalize each component of the tumor microenvironment, leading to the development of a variety of strategies. In this review, we provide an overview of the concepts of vascular and immune normalization and discuss some of the strategies employed to achieve these goals.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/pathology , Angiogenesis Inhibitors/therapeutic use , Immunotherapy , Neovascularization, Pathologic/drug therapy
4.
Nat Cancer ; 4(2): 290-307, 2023 02.
Article in English | MEDLINE | ID: mdl-36550235

ABSTRACT

We report a proteogenomic analysis of pancreatic ductal adenocarcinoma (PDAC). Mutation-phosphorylation correlations identified signaling pathways associated with somatic mutations in significantly mutated genes. Messenger RNA-protein abundance correlations revealed potential prognostic biomarkers correlated with patient survival. Integrated clustering of mRNA, protein and phosphorylation data identified six PDAC subtypes. Cellular pathways represented by mRNA and protein signatures, defining the subtypes and compositions of cell types in the subtypes, characterized them as classical progenitor (TS1), squamous (TS2-4), immunogenic progenitor (IS1) and exocrine-like (IS2) subtypes. Compared with the mRNA data, protein and phosphorylation data further classified the squamous subtypes into activated stroma-enriched (TS2), invasive (TS3) and invasive-proliferative (TS4) squamous subtypes. Orthotopic mouse PDAC models revealed a higher number of pro-tumorigenic immune cells in TS4, inhibiting T cell proliferation. Our proteogenomic analysis provides significantly mutated genes/biomarkers, cellular pathways and cell types as potential therapeutic targets to improve stratification of patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Carcinoma, Squamous Cell , Pancreatic Neoplasms , Proteogenomics , Animals , Mice , Humans , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Biomarkers , Pancreatic Neoplasms
6.
Nat Commun ; 13(1): 6292, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36272973

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year overall survival rate. Patients with PDAC display limited benefits after undergoing chemotherapy or immunotherapy modalities. Herein, we reveal that chemotherapy upregulates placental growth factor (PlGF), which directly activates cancer-associated fibroblasts (CAFs) to induce fibrosis-associated collagen deposition in PDAC. Patients with poor prognosis have high PIGF/VEGF expression and an increased number of PIGF/VEGF receptor-expressing CAFs, associated with enhanced collagen deposition. We also develop a multi-paratopic VEGF decoy receptor (Ate-Grab) by fusing the single-chain Fv of atezolizumab (anti-PD-L1) to VEGF-Grab to target PD-L1-expressing CAFs. Ate-Grab exerts anti-tumor and anti-fibrotic effects in PDAC models via the PD-L1-directed PlGF/VEGF blockade. Furthermore, Ate-Grab synergizes with gemcitabine by relieving desmoplasia. Single-cell RNA sequencing identifies that a CD141+ CAF population is reduced upon Ate-Grab and gemcitabine combination treatment. Overall, our results elucidate the mechanism underlying chemotherapy-induced fibrosis in PDAC and highlight a combinatorial therapeutic strategy for desmoplastic cancers.


Subject(s)
Antineoplastic Agents , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Single-Chain Antibodies , Female , Humans , Cancer-Associated Fibroblasts/metabolism , Vascular Endothelial Growth Factor A/metabolism , Placenta Growth Factor/genetics , Placenta Growth Factor/metabolism , Single-Chain Antibodies/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Receptors, Vascular Endothelial Growth Factor/metabolism , Antineoplastic Agents/pharmacology , Fibrosis , Pancreatic Neoplasms
7.
Nucleic Acids Res ; 50(12): e71, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35420135

ABSTRACT

The standard analysis pipeline for single-cell RNA-seq data consists of sequential steps initiated by clustering the cells. An innate limitation of this pipeline is that an imperfect clustering result can irreversibly affect the succeeding steps. For example, there can be cell types not well distinguished by clustering because they largely share the global structure, such as the anterior primitive streak and mid primitive streak cells. If one searches differentially expressed genes (DEGs) solely based on clustering, marker genes for distinguishing these types will be missed. Moreover, clustering depends on many parameters and can often be subjective to manual decisions. To overcome these limitations, we propose MarcoPolo, a method that identifies informative DEGs independently of prior clustering. MarcoPolo sorts out genes by evaluating if the distributions are bimodal, if similar expression patterns are observed in other genes, and if the expressing cells are proximal in a low-dimensional space. Using real datasets with FACS-purified cell labels, we demonstrate that MarcoPolo recovers marker genes better than competing methods. Notably, MarcoPolo finds key genes that can distinguish cell types that are not distinguishable by the standard clustering. MarcoPolo is built in a convenient software package that provides analysis results in an HTML file.


Subject(s)
Single-Cell Analysis , Software , Algorithms , Biomarkers , Cluster Analysis , Gene Expression Profiling/methods , RNA-Seq , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Exome Sequencing
8.
Cancer Cell Int ; 22(1): 135, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35346218

ABSTRACT

BACKGROUND: Microbiome has been shown to substantially contribute to some cancers. However, the diagnostic implications of microbiome in head and neck squamous cell carcinoma (HNSCC) remain unknown. METHODS: To identify the molecular difference in the microbiome of oral and non-oral HNSCC, primary data was downloaded from the Kraken-TCGA dataset. The molecular differences in the microbiome of oral and non-oral HNSCC were identified using the linear discriminant analysis effect size method. RESULTS: In the study, the common microbiomes in oral and non-oral cancers were Fusobacterium, Leptotrichia, Selenomonas and Treponema and Clostridium and Pseudoalteromonas, respectively. We found unique microbial signatures that positively correlated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in oral cancer and positively and negatively correlated KEGG pathways in non-oral cancer. In oral cancer, positively correlated genes were mostly found in prion diseases, Alzheimer disease, Parkinson disease, Salmonella infection, and Pathogenic Escherichia coli infection. In non-oral cancer, positively correlated genes showed Herpes simplex virus 1 infection and Spliceosome and negatively correlated genes showed results from PI3K-Akt signaling pathway, Focal adhesion, Regulation of actin cytoskeleton, ECM-receptor interaction and Dilated cardiomyopathy. CONCLUSIONS: These results could help in understanding the underlying biological mechanisms of the microbiome of oral and non-oral HNSCC. Microbiome-based oncology diagnostic tool warrants further exploration.

9.
Allergy Asthma Immunol Res ; 14(1): 99-116, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34983110

ABSTRACT

PURPOSE: Three observations drove this study. First, 2'-5'-oligoadenylate synthetase-like protein (OASL) is a negative regulator of type I interferon (IFN). Second, type I IFN plays a central role during virus infections and the pathogenesis of various diseases, including asthma. Third, influenza A virus (IAV) causes non-eosinophilic asthma. To evaluate the potential relationships between OASL, type I IFN, and pulmonary innate immune cells in IAV-induced acute airway inflammation by using Oasl1-/- mice. METHODS: Asthma was induced in wild-type (WT) and Oasl1-/- mice with IAV or ovalbumin (OVA). Airway hyperreactivity (AHR) and immune cell infiltration in the bronchoalveolar lavage (BAL) fluids were measured. The immune cells in the lungs were analyzed by flow cytometry. To investigate the ability of type I IFN to shape the response of lung type 2 innate lymphoid cells (ILC2s), IFN-α was treated intratracheally. Plasmacytoid dendritic cells (pDCs) sorted from bone marrow and ILC2s sorted from lungs of naive mice were co-cultured with/without interferon-alpha receptor subunit 1 (IFNAR-1)-blocking antibodies. RESULTS: In the IAV-induced asthma model, Oasl1-/- mice developed greater AHR and immune cell infiltration in the BAL fluids than WT mice. This was not observed in OVA-induced asthma, a standard model of allergen-induced asthma. The lungs of infected Oasl1-/- mice also had elevated DC numbers and Ifna expression and depressed IAV-induced ILC2 responses, namely, proliferation and type 2 cytokine and amphiregulin production. Intratracheal administration of type I IFN in naïve mice suppressed lung ILC2 production of type 2 cytokines and amphiregulin. Co-culture of ILC2s with pDCs showed that pDCs inhibit the function of ILC2s by secreting type I IFN. CONCLUSIONS: OASL1 may impede the IAV-induced acute airway inflammation that drives AHR by inhibiting IAV-induced type I IFN production from lung DCs, thereby preserving the functions of lung ILC2s, including their amphiregulin production.

10.
Am J Cancer Res ; 12(12): 5532-5551, 2022.
Article in English | MEDLINE | ID: mdl-36628292

ABSTRACT

The homing of M1 and M2 macrophages may play distinct roles in the tumor microenvironment (TME). However, these roles of macrophages in the TME remain unclear. We downloaded RNA sequencing data from The Cancer Genome Atlas (TCGA) database for patients with CRC. Subsequently, Kaplan-Meier survival curves were generated to assess the differential infiltration of M1 and M2 macrophages based on CRC location. Differentially expressed gene (DEG) and functional analyses were performed to screen the roles of DEGs. Critical prognostic genes were identified using least absolute shrinkage and selection operator regression. The risk scores were calculated for each patient. In patients with right-sided CRC, reduced M1 macrophage infiltration was associated with poor prognosis. M1 macrophage infiltration positively correlated with CD8+ T cell infiltration. A risk model was developed and validated for performance using GSE103479 and GSE72970. Nine genes were identified as independent prognostic genes that could be potential biomarkers for effectively predicting survival in patients with right-sided CRC. Kaplan-Meier curves for overall survival and progression-free survival analyses revealed that the high-risk group of patients with right-sided CRC had a poor prognosis. This novel M1 macrophage-related risk model may provide a gene signature for predicting the survival outcomes of patients with right-sided CRC and facilitate further studies examining the relationship between infiltration of M1 macrophages and the prognosis of such patients.

11.
Immune Netw ; 21(4): e31, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34522444

ABSTRACT

Gastric cancer (GC) is the fourth most common cause of cancer-related death globally. The classification of advanced GC (AGC) according to molecular features has recently led to effective personalized cancer therapy for some patients. Specifically, AGC patients whose tumor cells express high levels of human epidermal growth factor receptor 2 (HER2) can now benefit from trastuzumab, a humanized monoclonal Ab that targets HER2. However, patients with HER2negative AGC receive limited clinical benefit from this treatment. To identify potential immune therapeutic targets in HER2negative AGC, we obtained 40 fresh AGC specimens immediately after surgical resections and subjected the CD45+ immune cells in the tumor microenvironment to multi-channel/multi-panel flow cytometry analysis. Here, we report that HER2 negativity associated with reduced overall survival (OS) and greater tumor infiltration with neutrophils and non-classical monocytes. The potential pro-tumoral activities of these cell types were confirmed by the fact that high expression of neutrophil or non-classical monocyte signature genes in the gastrointestinal tumors in The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases associated with worse OS on Kaplan-Meir plots relative to tumors with low expression of these signature genes. Moreover, advanced stage disease in the AGCs of our patients associated with greater tumor frequencies of neutrophils and non-classical monocytes than early stage disease. Thus, our study suggests that these 2 myeloid populations may serve as novel therapeutic targets for HER2negative AGC.

12.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361059

ABSTRACT

In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.


Subject(s)
Cell Nucleus/metabolism , Dactinomycin/pharmacology , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Nuclear Proteins/metabolism , Nucleic Acid Synthesis Inhibitors/pharmacology , Transcription, Genetic , Cell Nucleus/drug effects , Cell Nucleus/genetics , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , HeLa Cells , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics
13.
Mol Cells ; 44(8): 580-590, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34462397

ABSTRACT

Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.


Subject(s)
Asthma/immunology , Asthma/therapy , Immunity, Innate , Lymphocytes/immunology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Severity of Illness Index , Th2 Cells/immunology , Administration, Intravenous , Alternaria/physiology , Animals , Asthma/physiopathology , Bronchial Hyperreactivity/immunology , Cytokines/biosynthesis , Female , Inflammation/pathology , Lung/immunology , Lung/pathology , Mice, Inbred BALB C
14.
J Infect Dis ; 224(1): 39-48, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33755725

ABSTRACT

BACKGROUND: Understanding the memory T-cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for assessing the longevity of protective immunity after SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination. However, the longitudinal memory T-cell response up to 8 months post-symptom onset (PSO) according to the severity of illness is unknown. METHODS: We analyzed peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with COVID-19 who experienced asymptomatic, mild, or severe illness at 2, 5, and 8 months PSO. SARS-CoV-2 spike, nucleocapsid, and membrane protein-stimulated PBMCs were subjected to flow cytometry analysis. RESULTS: A total of 24 patients (7 asymptomatic, 9 with mild disease, and 8 with severe disease) and 6 healthy volunteers were analyzed. SARS-CoV-2-specific OX40+CD137+CD4+ T cells and CD69+CD137+CD8+ T cells persisted at 8 months PSO. Also, antigen-specific cytokine-producing or polyfunctional CD4+ T cells were maintained for up to 8 months PSO. Memory CD4+ T-cell responses tended to be greater in patients who had severe illness than in those with mild or asymptomatic disease. CONCLUSIONS: Memory response to SARS-CoV-2, based on the frequency and functionality, persists for 8 months PSO. Further investigations involving its longevity and protective effect from reinfection are warranted.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Immunologic Memory , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Antigens, Viral , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , Cytokines/metabolism , Disease Management , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunity, Cellular , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Symptom Assessment , T-Lymphocyte Subsets/metabolism , Time Factors
15.
Biomaterials ; 271: 120760, 2021 04.
Article in English | MEDLINE | ID: mdl-33774526

ABSTRACT

Following the clinical success of immunotherapeutic antibodies, bispecific antibodies for cytotoxic effector cell redirection, tumor-targeted immunomodulation and dual immunomodulation, have received particular attentions. Here, we developed a novel bispecific antibody platform, termed Antibody-Like Cell Engager (ALiCE), wherein the Fc domain of each heavy chain of immunoglobulin G (IgG) is replaced by the VH and VL domains of an IgG specific to a second antigen while retaining the N-terminal Fab of the parent antibody. Because of specific interactions between the substituted VH and VL domains, the C-terminal stem Fv enables ALiCE to assemble autonomously into hetero-tetramers, thus simultaneously binding to two distinct antigens but with different avidities. This design strategy was used to generate ACE-05 (two anti-PD-L1 Fab × anti-CD3 Fv) and ACE-31 (two anti-CD3 Fab × anti-PD-L1 Fv), both of which bound PD-L1 and CD3. However, ACE-05 was more effective than ACE-31 in reducing off-target toxicity caused by the indiscriminate activation of T cells. Moreover, in cell-based assays and PBMC-reconstituted humanized mice harboring human non-small-cell lung cancer tumors, ACE-05 showed marked antitumor efficacy, causing complete tumor regression at a dose of 0.05 mg/kg body weight. The dual roles of ACE-05 in immune checkpoint inhibition and T-cell redirection, coupled with reduced off-target toxicity, suggest that ACE-05 may be a promising anti-cancer therapeutic agent. Moreover, the bispecific ALiCE platform can be further used for tumor-targeted or multiple immunomodulation applications.


Subject(s)
Antibodies, Bispecific , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Antibodies, Bispecific/therapeutic use , CD3 Complex , Leukocytes, Mononuclear , Mice , T-Lymphocytes
16.
BMB Rep ; 53(7): 357-366, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32475382

ABSTRACT

Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the realtime IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes. [BMB Reports 2020; 53(7): 357-366].


Subject(s)
Intravital Microscopy/methods , Single-Cell Analysis/methods , Animals , Humans
17.
Nat Biotechnol ; 38(4): 420-425, 2020 04.
Article in English | MEDLINE | ID: mdl-32042168

ABSTRACT

Several cancer immunotherapy approaches, such as immune checkpoint blockade and adoptive T-cell therapy, boost T-cell activity against the tumor, but these strategies are not effective in the absence of T cells specific for displayed tumor antigens. Here we outline an immunotherapy in which endogenous T cells specific for a noncancer antigen are retargeted to attack tumors. The approach relies on the use of antibody-peptide epitope conjugates (APECs) to deliver suitable antigens to the tumor surface for presention by HLA-I. To retarget cytomegalovirus (CMV)-specific CD8+ T cells against tumors, we used APECs containing CMV-derived epitopes conjugated to tumor-targeting antibodies via metalloprotease-sensitive linkers. These APECs redirect pre-existing CMV immunity against tumor cells in vitro and in mouse cancer models. In vitro, APECs activated specifically CMV-reactive effector T cells whereas a bispecific T-cell engager activated both effector and regulatory T cells. Our approach may provide an effective alternative in cancers that are not amenable to checkpoint inhibitors or other immunotherapies.


Subject(s)
Antibodies/immunology , CD8-Positive T-Lymphocytes/transplantation , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/immunology , Immunoconjugates/therapeutic use , Neoplasms/therapy , Animals , Antibodies/chemistry , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Epitopes, T-Lymphocyte/chemistry , Histocompatibility Antigens Class I/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/metabolism , Immunomodulation , Immunotherapy, Adoptive , Lymphocyte Activation , Matrix Metalloproteinases/metabolism , Mice , Neoplasms/immunology
18.
Front Immunol ; 10: 1817, 2019.
Article in English | MEDLINE | ID: mdl-31474975

ABSTRACT

Recent preclinical/clinical studies have underscored the significant impact of tumor microenvironment (TME) on tumor progression in diverse scenarios. Highly heterogeneous and complex, the tumor microenvironment is composed of malignant cancer cells and non-malignant cells including endothelial cells, fibroblasts, and diverse immune cells. Since immune compartments play pivotal roles in regulating tumor progression via various mechanisms, understanding of their multifaceted functions is crucial to developing effective cancer therapies. While roles of lymphoid cells in tumors have been systematically studied for a long time, the complex functions of myeloid cells have been relatively underexplored. However, constant findings on tumor-associated myeloid cells are drawing attention, highlighting the primary effects of innate immune cells such as monocytes and neutrophils in disease progression. This review focuses on hitherto identified contextual developments and functions of monocytes and neutrophils with a special interest in solid tumors. Moreover, ongoing clinical applications are discussed at the end of the review.


Subject(s)
Endothelial Cells/immunology , Monocytes/immunology , Neoplasms/immunology , Neutrophils/immunology , Tumor Microenvironment/immunology , Animals , Cell Differentiation/immunology , Dendritic Cells/immunology , Disease Progression , Humans , Immunity, Innate/immunology , Macrophages/immunology , Mice , Monocytes/cytology
19.
Sci Transl Med ; 10(432)2018 03 14.
Article in English | MEDLINE | ID: mdl-29540614

ABSTRACT

Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors.


Subject(s)
Breast Neoplasms/drug therapy , Fibroblast Growth Factor 2/metabolism , Interleukin-6/metabolism , Obesity/complications , Vascular Endothelial Growth Factor A/metabolism , Animals , Antineoplastic Agents/therapeutic use , Enzyme-Linked Immunosorbent Assay , Female , Humans , Metformin/therapeutic use , Mice , Vascular Endothelial Growth Factor A/antagonists & inhibitors
20.
Sci Transl Med ; 10(424)2018 01 17.
Article in English | MEDLINE | ID: mdl-29343625

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of morbidity and mortality worldwide and is a frequent cause of skin and soft tissue infections (SSTIs). Lymphedema-fluid accumulation in tissue caused by impaired lymphatic vessel function-is a strong risk factor for SSTIs. SSTIs also frequently recur in patients and sometimes lead to acquired lymphedema. However, the mechanism of how SSTIs can be both the consequence and the cause of lymphatic vessel dysfunction is not known. Intravital imaging in mice revealed an acute reduction in both lymphatic vessel contractility and lymph flow after localized MRSA infection. Moreover, chronic lymphatic impairment is observed long after MRSA is cleared and inflammation is resolved. Associated with decreased collecting lymphatic vessel function was the loss and disorganization of lymphatic muscle cells (LMCs), which are critical for lymphatic contraction. In vitro, incubation with MRSA-conditioned supernatant led to LMC death. Proteomic analysis identified several accessory gene regulator (agr)-controlled MRSA exotoxins that contribute to LMC death. Infection with agr mutant MRSA resulted in sustained lymphatic function compared to animals infected with wild-type MRSA. Our findings suggest that agr is a promising target to preserve lymphatic vessel function and promote immunity during SSTIs.


Subject(s)
Lymphatic Vessels/immunology , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Animals , Cell Survival/physiology , Cells, Cultured , Female , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Inflammation/immunology , Male , Mice, Inbred C57BL , Microbial Sensitivity Tests , Muscle Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...