Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(10): e2207076, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36583605

ABSTRACT

During solid-state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid-state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state-of-the-art Ni-rich layered oxides (LiNi1-x-y Cox Mny O2 , NRNCM) as cathode materials for lithium-ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron-based X-ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature-dependent reaction kinetics, the diffusivity of solid-state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high-energy/power density lithium-ion batteries.

2.
Adv Mater ; 33(51): e2105337, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34599774

ABSTRACT

Understanding the cycling rate-dependent kinetics is crucial for managing the performance of batteries in high-power applications. Although high cycling rates may induce reaction heterogeneity and affect battery lifetime and capacity utilization, such phase transformation dynamics are poorly understood and uncontrollable. In this study, synchrotron-based operando X-ray diffraction is performed to monitor the high-current-induced phase transformation kinetics of LiNi0.6 Co0.2 Mn0.2 O2 . The sluggish Li diffusion at high Li content induces different phase transformations during charging and discharging, with strong phase separation and homogeneous phase transformation during charging and discharging, respectively. Moreover, by exploiting the dependence of Li diffusivity on the Li content and electrochemically tuning the initial Li content and distribution, phase separation pathway can be redirected to solid solution kinetics at a high charging rate of 7 C. Finite element analysis further elucidates the effect of the Li-content-dependent diffusion kinetics on the phase transformation pathway. The findings suggest a new direction for optimizing fast-cycling protocols based on the intrinsic properties of the materials.

3.
Nano Lett ; 21(12): 5345-5352, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34097829

ABSTRACT

The quest for safe and high-performance Li ion batteries (LIBs) motivates intense efforts seeking a high-energy but reliable anode, cathode, and nonflammable electrolyte. For any of these, exploring new electrochemistry methods that enhance safety and performance by employing well-designed electrodes and electrolytes are required. Electrolyte wetting, governed by thermodynamics, is another critical issue in increasing Li ion transport through the separator. Herein, we report an approach to enhancing LIB performance by applying mechanical resonant vibration to increase electrolyte wettability on the separator. Wetting is activated at a resonant frequency with a capillary wave along the surface of the electrolyte, allowing the electrolyte to infiltrate into the porous separator by inertia force. This mechanical resonance, rather than electrochemistry, leads to the high specific capacity, rate capability, and cycling stability of LIBs. The concept of the mechanical approach is a promising yet simple strategy for the development of safer LIBs using liquid electrolytes.

4.
Chem Commun (Camb) ; 57(1): 45-48, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33325930

ABSTRACT

Reducing the operating temperature of conventional molten sodium-sulfur batteries (∼350 °C) is critical to create safe and cost-effective large-scale storage devices. By raising the surface treatment temperature of lead acetate trihydrate, the sodium wettability on ß''-Al2O3 improved significantly at 120 °C. The low temperature Na-S cell can reach a capacity as high as 520.2 mA h g-1 and stable cycling over 1000 cycles.

5.
Nano Lett ; 19(12): 8811-8820, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31771329

ABSTRACT

Wetting Na metal on the solid electrolyte of a liquid Na battery determines the operating temperature and performance of the battery. At low temperatures below 200 °C, liquid Na wets poorly on a solid electrolyte near its melting temperature (Tm = 98 °C), limiting its suitability for use in low-temperature batteries used for large-scale energy-storage systems. Herein, we propose the use of sparked reduced graphene oxide (rGO) that can improve the Na wetting in sodium-beta alumina batteries (NBBs), allowing operation at lower temperatures. Experimental and computational studies indicated rGO layers with nanogaps exhibited complete liquid Na wetting regardless of the surface energy between the liquid Na and the graphene oxide, which originated from the capillary force in the gap. Employing sparked rGO significantly enhanced the cell performance at 175 °C; the cell retained almost 100% Coulombic efficiency after the initial cycle, which is a substantial improvement over cells without sparked rGO. These results suggest that coating sparked rGO is a promising but simple strategy for the development of low-temperature NBBs.

6.
Chem Commun (Camb) ; 55(53): 7643-7646, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31198916

ABSTRACT

A lithium-oxygen battery based on a triplex-Li+-selective solid membrane (LSSM) is proposed. An inorganic LSSM with a triplex (porous/dense/porous) structure is prepared via tape-casting. The cell exhibits promising rate-capability and reversibility during cycling. The triplex-LSSM architecture may allow cell designs to be scaled up for use in large systems.

7.
ACS Appl Mater Interfaces ; 11(3): 2917-2924, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30580514

ABSTRACT

Wetting of the liquid metal on the solid electrolyte of a liquid metal battery controls the operating temperature and performance of the battery. Liquid sodium electrodes are particularly attractive because of their low cost, natural abundance, and geological distribution. However, they wet poorly on a solid electrolyte near its melting temperature, limiting their widespread suitability for low-temperature batteries to be used for large-scale energy storage systems. Herein, we develop an isolated metal-island strategy that can improve sodium wetting in sodium-beta alumina batteries that allows operation at lower temperatures. Our results suggest that in situ heat treatment of a solid electrolyte followed by bismuth deposition effectively eliminates oxygen and moisture from the surface of the solid electrolyte, preventing the formation of an oxide layer on the liquid sodium, leading to enhanced wetting. We also show that employing isolated bismuth islands significantly improves cell performance, with cells retaining 94% of their charge after the initial cycle, an improvement over cells without bismuth islands. These results suggest that coating isolated metal islands is a promising and straightforward strategy for the development of low-temperature sodium-ß alumina batteries.

8.
ACS Omega ; 3(11): 15702-15708, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458224

ABSTRACT

The Na-ß-alumina battery (NBB) is one of the most promising energy storage technologies for integrating renewable energy resources into the grid. In the family of NBBs, Na-NiCl2 battery has been extensively studied during the past decade because it has a lower operating temperature, better safety, and good battery performance. One of the major issues with the Na-NiCl2 battery is material cost, which is primarily from Ni metal in the battery cathode. As an alternative, Zn is much cheaper than Ni, and replacing Ni with Zn in the cathode can significantly reduce the cost. In this work, we investigate the performance and reaction mechanism for a Na-ZnCl2 battery at 190 °C. Two-step reversible reactions are identified. During the first step of charging, NaCl reacts with Zn to produce a ribbon-type Na2ZnCl4 layer. This layer is formed at the NaCl-Zn interface rather than covering the surface of the Zn particles, which leads to an excellent cell rate capability. During the second step, the produced Na2ZnCl4 is gradually consumed to form ZnCl2 on the surface of Zn particles. The formed ZnCl2 covers most of the surface area of the Zn particles and shows a limited rate capability compared to that of the first step. We conclude that this limited performance of the second step is due to the passivation of Zn particles by ZnCl2, which blocks the electron pathway of the NaCl-Zn cathodes.

9.
ACS Appl Mater Interfaces ; 9(13): 11609-11614, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28300391

ABSTRACT

Stationary electric energy storage devices (rechargeable batteries) have gained increasing prominence due to great market needs, such as smoothing the fluctuation of renewable energy resources and supporting the reliability of the electric grid. With regard to raw materials availability, sodium-based batteries are better positioned than lithium batteries due to the abundant resource of sodium in Earth's crust. However, the sodium-nickel chloride (Na-NiCl2) battery, one of the most attractive stationary battery technologies, is hindered from further market penetration by its high material cost (Ni cost) and fast material degradation at its high operating temperature. Here, we demonstrate the design of a core-shell microarchitecture, nickel-coated graphite, with a graphite core to maintain electrochemically active surface area and structural integrity of the electron percolation pathway while using 40% less Ni than conventional Na-NiCl2 batteries. An initial energy density of 133 Wh/kg (at ∼C/4) and energy efficiency of 94% are achieved at an intermediate temperature of 190 °C.

10.
ACS Appl Mater Interfaces ; 8(41): 27814-27824, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27700032

ABSTRACT

The Na superionic conductor (aka Nasicon, Na1+xZr2SixP3-xO12, where 0 ≤ x ≤ 3) is one of the promising solid electrolyte materials used in advanced molten Na-based secondary batteries that typically operate at high temperature (over ∼270 °C). Nasicon provides a 3D diffusion network allowing the transport of the active Na-ion species (i.e., ionic conductor) while blocking the conduction of electrons (i.e., electronic insulator) between the anode and cathode compartments of cells. In this work, the standard Nasicon (Na3Zr2Si2PO12, bare sample) and 10 at% Na-excess Nasicon (Na3.3Zr2Si2PO12, Na-excess sample) solid electrolytes were synthesized using a solid-state sintering technique to elucidate the Na diffusion mechanism (i.e., grain diffusion or grain boundary diffusion) and the impacts of adding excess Na at relatively low and high temperatures. The structural, thermal, and ionic transport characterizations were conducted using various experimental tools including X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). In addition, an ab initio atomistic modeling study was carried out to computationally examine the detailed microstructures of Nasicon materials, as well as to support the experimental observations. Through this combination work comprising experimental and computational investigations, we show that the predominant mechanisms of Na-ion transport in the Nasicon structure are the grain boundary and the grain diffusion at low and high temperatures, respectively. Also, it was found that adding 10 at% excess Na could give rise to a substantial increase in the total conductivity (e.g., ∼1.2 × 10-1 S/cm at 300 °C) of Nasicon electrolytes resulting from the enlargement of the bottleneck areas in the Na diffusion channels of polycrystalline grains.

SELECTION OF CITATIONS
SEARCH DETAIL
...