Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neuropsychol ; : 1-20, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38380810

ABSTRACT

OBJECTIVE:  Individuals with type 1 diabetes (T1D) have increased risk for cognitive dysfunction and high rates of sleep disturbance. Despite associations between glycemia and cognitive performance using cross-sectional and experimental methods few studies have evaluated this relationship in a naturalistic setting, or the impact of nocturnal versus daytime hypoglycemia. Ecological Momentary Assessment (EMA) may provide insight into the dynamic associations between cognition, affective, and physiological states. The current study couples EMA data with continuous glucose monitoring (CGM) to examine the within-person impact of nocturnal glycemia on next day cognitive performance in adults with T1D. Due to high rates of sleep disturbance and emotional distress in people with T1D, the potential impacts of sleep characteristics and negative affect were also evaluated. METHODS:  This pilot study utilized EMA in 18 adults with T1D to examine the impact of glycemic excursions, measured using CGM, on cognitive performance, measured via mobile cognitive assessment using the TestMyBrain platform. Multilevel modeling was used to test the within-person effects of nocturnal hypoglycemia and hyperglycemia on next day cognition. RESULTS:  Results indicated that increases in nocturnal hypoglycemia were associated with slower next day processing speed. This association was not significantly attenuated by negative affect, sleepiness, or sleep quality. CONCLUSIONS:  These results, while preliminary due to small sample size, showcase the power of intensive longitudinal designs using ambulatory cognitive assessment to uncover novel determinants of cognitive fluctuation in real world settings, an approach that may be utilized in other populations. Findings suggest reducing nocturnal hypoglycemia may improve cognition in adults with T1D.

2.
J Med Internet Res ; 25: e45028, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37266996

ABSTRACT

BACKGROUND: The current methods of evaluating cognitive functioning typically rely on a single time point to assess and characterize an individual's performance. However, cognitive functioning fluctuates within individuals over time in relation to environmental, psychological, and physiological contexts. This limits the generalizability and diagnostic utility of single time point assessments, particularly among individuals who may exhibit large variations in cognition depending on physiological or psychological context (eg, those with type 1 diabetes [T1D], who may have fluctuating glucose concentrations throughout the day). OBJECTIVE: We aimed to report the reliability and validity of cognitive ecological momentary assessment (EMA) as a method for understanding between-person differences and capturing within-person variation in cognition over time in a community sample and sample of adults with T1D. METHODS: Cognitive performance was measured 3 times a day for 15 days in the sample of adults with T1D (n=198, recruited through endocrinology clinics) and for 10 days in the community sample (n=128, recruited from TestMyBrain, a web-based citizen science platform) using ultrabrief cognitive tests developed for cognitive EMA. Our cognitive EMA platform allowed for remote, automated assessment in participants' natural environments, enabling the measurement of within-person cognitive variation without the burden of repeated laboratory or clinic visits. This allowed us to evaluate reliability and validity in samples that differed in their expected degree of cognitive variability as well as the method of recruitment. RESULTS: The results demonstrate excellent between-person reliability (ranging from 0.95 to 0.99) and construct validity of cognitive EMA in both the sample of adults with T1D and community sample. Within-person reliability in both samples (ranging from 0.20 to 0.80) was comparable with that observed in previous studies in healthy older adults. As expected, the full-length baseline and EMA versions of TestMyBrain tests correlated highly with one another and loaded together on the expected cognitive domains when using exploratory factor analysis. Interruptions had higher negative impacts on accuracy-based outcomes (ß=-.34 to -.26; all P values <.001) than on reaction time-based outcomes (ß=-.07 to -.02; P<.001 to P=.40). CONCLUSIONS: We demonstrated that ultrabrief mobile assessments are both reliable and valid across 2 very different clinic versus community samples, despite the conditions in which cognitive EMAs are administered, which are often associated with more noise and variability. The psychometric characteristics described here should be leveraged appropriately depending on the goals of the cognitive assessment (eg, diagnostic vs everyday functioning) and the population being studied.


Subject(s)
Diabetes Mellitus, Type 1 , Ecological Momentary Assessment , Humans , Aged , Reproducibility of Results , Cognition , Data Collection
3.
Article in English | MEDLINE | ID: mdl-36922302

ABSTRACT

BACKGROUND: Deficits in cognitive performance are implicated in the development and maintenance of psychopathology. Emerging evidence further suggests that within-person fluctuations in cognitive performance may represent sensitive early markers of neuropsychiatric decline. Incorporating routine cognitive assessments into standard clinical care-to identify between-person differences and monitor within-person fluctuations-has the potential to improve diagnostic screening and treatment planning. In support of these goals, it is critical to understand to what extent cognitive performance varies under routine, remote assessment conditions (i.e., momentary cognition) in relation to a wide range of possible predictors. METHODS: Using data-driven, high-dimensional methods, we ranked strong predictors of momentary cognition and evaluated out-of-sample predictive accuracy. Our approach leveraged innovations in digital technology, including ambulatory assessment of cognition and behavior 1) at scale (n = 122 participants, n = 94 females), 2) in naturalistic environments, and 3) within an intensive longitudinal study design (mean = 25.5 assessments/participant). RESULTS: Reaction time (R2 > 0.70) and accuracy (0.56 >R2 > 0.35) were strongly predicted by age, between-person differences in mean performance, and time of day. Effects of self-reported, intraindividual fluctuations in environmental (e.g., noise) and internal (e.g., stress) states were also observed. CONCLUSIONS: Our results provide robust estimates of effect size to characterize sources of cognitive variability, to support the identification of optimal windows for psychosocial interventions, and to possibly inform clinical evaluation under remote neuropsychological assessment conditions.


Subject(s)
Cognition Disorders , Cognition , Female , Humans , Longitudinal Studies , Reaction Time , Neuropsychological Tests
4.
JMIR Diabetes ; 8: e39750, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36602848

ABSTRACT

BACKGROUND: Individuals with type 1 diabetes represent a population with important vulnerabilities to dynamic physiological, behavioral, and psychological interactions, as well as cognitive processes. Ecological momentary assessment (EMA), a methodological approach used to study intraindividual variation over time, has only recently been used to deliver cognitive assessments in daily life, and many methodological questions remain. The Glycemic Variability and Fluctuations in Cognitive Status in Adults with Type 1 Diabetes (GluCog) study uses EMA to deliver cognitive and self-report measures while simultaneously collecting passive interstitial glucose in adults with type 1 diabetes. OBJECTIVE: We aimed to report the results of an EMA optimization pilot and how these data were used to refine the study design of the GluCog study. An optimization pilot was designed to determine whether low-frequency EMA (3 EMAs per day) over more days or high-frequency EMA (6 EMAs per day) for fewer days would result in a better EMA completion rate and capture more hypoglycemia episodes. The secondary aim was to reduce the number of cognitive EMA tasks from 6 to 3. METHODS: Baseline cognitive tasks and psychological questionnaires were completed by all the participants (N=20), followed by EMA delivery of brief cognitive and self-report measures for 15 days while wearing a blinded continuous glucose monitor. These data were coded for the presence of hypoglycemia (<70 mg/dL) within 60 minutes of each EMA. The participants were randomized into group A (n=10 for group A and B; starting with 3 EMAs per day for 10 days and then switching to 6 EMAs per day for an additional 5 days) or group B (N=10; starting with 6 EMAs per day for 5 days and then switching to 3 EMAs per day for an additional 10 days). RESULTS: A paired samples 2-tailed t test found no significant difference in the completion rate between the 2 schedules (t17=1.16; P=.26; Cohen dz=0.27), with both schedules producing >80% EMA completion. However, more hypoglycemia episodes were captured during the schedule with the 3 EMAs per day than during the schedule with 6 EMAs per day. CONCLUSIONS: The results from this EMA optimization pilot guided key design decisions regarding the EMA frequency and study duration for the main GluCog study. The present report responds to the urgent need for systematic and detailed information on EMA study designs, particularly those using cognitive assessments coupled with physiological measures. Given the complexity of EMA studies, choosing the right instruments and assessment schedules is an important aspect of study design and subsequent data interpretation.

5.
J Clin Exp Neuropsychol ; 43(8): 786-795, 2021 10.
Article in English | MEDLINE | ID: mdl-34907842

ABSTRACT

INTRODUCTION: To allow continued administration of neuropsychological evaluations remotely during the pandemic, tests from the not-for-profit platform, TestMyBrain.org (TMB), were used to develop the TMB Digital Neuropsychology Toolkit (DNT). This study details the psychometric characteristics of the DNT, as well as the infrastructure and development of the DNT. METHOD: The DNT was primarily distributed for clinical use, with (72.8%) of individuals requesting access for clinical purposes. To assess reliability and validity of the DNT, anonymous data from DNT test administrations were analyzed and compared to a large, non-clinical normative sample from TMB. RESULTS: DNT test scores showed acceptable to very good split-half reliability (.68-.99). Factor analysis revealed three latent factors, corresponding to processing speed, working memory, and a broader general cognitive ability factor that included perceptual reasoning and episodic memory. Average test scores were slightly poorer for the DNT sample than for the TMB comparison sample, as expected given the clinical use of the DNT. CONCLUSIONS: Initial estimates of reliability and validity of DNT tests support their use as digital measures of neuropsychological functioning. Tests within cognitive domains correlated highly with each other and demonstrated good reliability and validity. Future work will seek to validate DNT tests in specific clinical populations and determine best practices for using DNT outcome measures to assess engagement and psychological symptomatology.


Subject(s)
Cognition Disorders , Neuropsychology , Humans , Neuropsychological Tests , Psychometrics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...