Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6636): 1019-1023, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36893226

ABSTRACT

Statistical mechanics demands that the temperature of a system is positive provided that its internal energy has no upper bound. Yet if this condition is not met, it is possible to attain negative temperatures for which higher-order energy states are thermodynamically favored. Although negative temperatures have been reported in spin and Bose-Hubbard settings as well as in quantum fluids, the observation of thermodynamic processes in this regime has thus far remained elusive. Here, we demonstrate isentropic expansion-compression and Joule expansion for negative optical temperatures, enabled by purely nonlinear photon-photon interactions in a thermodynamic microcanonical photonic system. Our photonic approach provides a platform for exploring new all-optical thermal engines and could have ramifications in other bosonic systems beyond optics, such as cold atoms and optomechanics.

3.
Opt Express ; 29(20): 31941-31951, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615275

ABSTRACT

Light-sheet fluorescence microscopy has greatly improved the speed and overall photostability of optically sectioning cellular and multi-cellular specimens. Similar gains have also been conferred by light-sheet Raman imaging; these schemes, however, rely on diffraction limited Gaussian beams that hinder the uniformity and size of the imaging field-of-view, and, as such, the resulting throughput rates. Here, we demonstrate that a digitally scanned Airy beam increases the Raman imaging throughput rates by more than an order of magnitude than conventional diffraction-limited beams. Overall, this, spectrometer-less, approach enabled 3D imaging of microparticles with high contrast and 1 µm axial resolution at 300 msec integration times per plane and orders of magnitude lower irradiation density than coherent Raman imaging schemes. We detail the apparatus and its performance, as well as its compatibility with fluorescence light-sheet and quantitative-phase imaging towards rapid and low phototoxicity multimodal imaging.


Subject(s)
Image Enhancement/methods , Lighting/methods , Microscopy/methods , Spectrum Analysis, Raman/methods , Dimethylpolysiloxanes , Microscopy, Fluorescence/methods
4.
Sci Rep ; 10(1): 20150, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214600

ABSTRACT

Light-sheet microscopy enables considerable speed and phototoxicity gains, while quantitative-phase imaging confers label-free recognition of cells and organelles, and quantifies their number-density that, thermodynamically, is more representative of metabolism than size. Here, we report the fusion of these two imaging modalities onto a standard inverted microscope that retains compatibility with microfluidics and open-source software for image acquisition and processing. An accelerating Airy-beam light-sheet critically enabled imaging areas that were greater by more than one order of magnitude than a Gaussian beam illumination and matched exactly those of quantitative-phase imaging. Using this integrative imaging system, we performed a demonstrative multivariate investigation of live-cells in microfluidics that unmasked that cellular noise can affect the compartmental localization of metabolic reactions. We detail the design, assembly, and performance of the integrative imaging system, and discuss potential applications in biotechnology and evolutionary biology.

SELECTION OF CITATIONS
SEARCH DETAIL