Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 330: 118270, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38685368

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cheonwangbosimdan (CWBSD), a herbal medicine traditionally used for anxiety, insomnia, depression, and heart palpitations, has been reported to have anti-anxiety, antidepressant, cognitive improvement, and neuroprotective effects. AIM OF THE STUDY: The purpose of this study was to determine if CWBSD could affect post-traumatic stress disorder (PTSD)-like behaviors because it has prioritized clinical use over mechanism study. MATERIALS AND METHODS: A single prolonged stress (SPS) mouse model, a well-established animal model of PTSD, was used to investigate whether standardized CWBSD could mitigate PTSD-like behaviors through robust behavioral tests, including the elevated plus-maze test and marble burying test for measuring anxiety-like behaviors, the splash test, forced swimming test, and tail suspension test for evaluating depression-like behaviors, and the Y-maze test and novel object recognition test for assessing cognitive function. Additionally, a fear extinction test was employed to determine whether CWBSD might reverse fear memory extinction deficits. Amygdala tissue was isolated from SPS-treated mouse brain and subjected to Western blotting or quantitative PCR to explore mechanisms by which CWBSD could mitigate PTSD-like behaviors. RESULTS: CWBSD ameliorated emotional impairments and cognitive dysfunction in an SPS-induced PTSD-like mouse model. It also mitigated deficits in abnormal fear memory extinction. Protein expression levels of N-methyl-D-aspartate (NMDA) receptor subunit 2B (GluN2B) and phosphorylation levels of Ca2+/calmodulin-dependent protein kinase II in the amygdala were increased in SPS model mice and normalized by CWBSD. Additionally, co-administration of CWBSD and GluN2B-containing NMDA receptor antagonist, ifenprodil, at each sub-effective dose promoted fear memory extinction. CONCLUSIONS: CWBSD can alleviate SPS-induced PTSD-like behaviors by normalizing GluN2B-containing NMDA receptor activity in the amygdala. Therefore, CWBSD could be a promising candidate for PTSD treatment with fewer adverse effects and better efficacy than existing therapies.


Subject(s)
Behavior, Animal , Disease Models, Animal , Receptors, N-Methyl-D-Aspartate , Stress Disorders, Post-Traumatic , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/metabolism , Male , Mice , Behavior, Animal/drug effects , Mice, Inbred C57BL , Fear/drug effects , Amygdala/drug effects , Amygdala/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Anxiety/drug therapy , Anxiety/psychology
2.
Article in English | MEDLINE | ID: mdl-38467326

ABSTRACT

Post-traumatic stress disorder (PTSD) is a mental illness that can occur in individuals who have experienced trauma. Current treatments for PTSD, typically serotonin reuptake inhibitors, have limited effectiveness for patients and often cause serious adverse effects. Therefore, a novel class of treatment with better pharmacological profile is necessary. D-Pinitol has been reported to be effective for depression and anxiety disorders, but there are no reports associated with PTSD. In the present study, we investigated the effects of D-pinitol in a mouse model of PTSD induced by a single prolonged stress (SPS) protocol. We examined the therapeutic effects of D-pinitol on emotional and cognitive impairments in the SPS mouse model. We also investigated the effects of D-pinitol on fear memory formation. Mineralocorticoid receptor transactivation assay, Western blot, and quantitative PCR were employed to investigate how D-pinitol exerts its pharmacological activities. D-Pinitol ameliorated PTSD-like behaviors in a SPS mouse model. D-Pinitol also normalized the increased mRNA expression levels and protein levels of the mineralocorticoid receptor in the amygdala. A mineralocorticoid receptor agonist reversed the effects of D-pinitol on fear extinction and recall, and the antagonistic property of D-pinitol against the mineralocorticoid receptor was confirmed in vitro. Our findings suggest that D-pinitol could serve as a potential therapeutic agent for PTSD due to its antagonistic effect on the mineralocorticoid receptor.


Subject(s)
Inositol/analogs & derivatives , Stress Disorders, Post-Traumatic , Mice , Humans , Animals , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/psychology , Fear/physiology , Extinction, Psychological , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/therapeutic use , Disease Models, Animal , Stress, Psychological/psychology
3.
J Ethnopharmacol ; 327: 118063, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38493906

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Moutan cortex (MC), the root bark of Paeonia suffruticosa Anderws (Paeoniaceae), has been historically employed in traditional herbal medicine for addressing women's ailments by replenishing kidney Yin. AIM OF THE STUDY: We aimed to explore if paeonol, an active constituent of MC, could ameliorate neuropsychiatric symptoms, such as anxiety, depression, and cognitive impairments, associated with post-menopausal syndrome (PMS) in an ovariectomized (OVX) mouse model. MATERIALS AND METHODS: The experimental design comprised 6 groups, including a sham group, OVX group, paeonol administration groups (3, 10 or 30 mg/kg, p.o.), and an estradiol (E2)-treated positive control group. Behavioral tests including the open field, novel object recognition, Y-maze, elevated plus-maze, splash, and forced swimming tests were conducted. In addition, we investigated the effets of paeonol on the phosphorylated levels of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as on the expression levels of G protein-coupled receptor (GPR30) and brain-derived neurotrophic factor (BDNF) in the prefrontal cortex and hippocampus. RESULTS: Paeonol treatment (10 and 30 mg/kg, p.o.) effectively reversed the cognitive decline in OVX mice, measured by the novel object recognition and Y-maze tests, similar to that in the positive control group. Additionally, it alleviated anxiety- and depressive-like behaviors, as evaluated by the elevated plus-maze test, splash test, and forced swimming test. Paeonol restored GPR30 expression levels in the prefrontal cortex and hippocampus, mirroring the effects of E2 administration. Furthermore, it reversed the reduced expression levels of the PI3K-Akt-mTOR signaling pathway in the prefrontal cortex and hippocampus and increased BDNF expression in the hippocampus of OVX mice. CONCLUSION: This research suggests that paeonol would be beneficial for alleviating PMS-associated cognitive impairment, anxiety and depression.


Subject(s)
Acetophenones , Brain-Derived Neurotrophic Factor , Postmenopause , Mice , Humans , Female , Animals , Brain-Derived Neurotrophic Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Hippocampus , TOR Serine-Threonine Kinases/metabolism , Mammals/metabolism
4.
J Ginseng Res ; 48(1): 59-67, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223823

ABSTRACT

Background: Alzheimer's disease (AD) has memory impairment associated with aggregation of amyloid plaques and neurofibrillary tangles in the brain. Although anti-amyloid ß (Aß) protein antibody and chemical drugs can be prescribed in the clinic, they show adverse effects or low effectiveness. Therefore, the development of a new drug is necessarily needed. We focused on the cognitive function of Panax ginseng and tried to find active ingredient(s). We isolated panaxcerol D, a kind of glycosyl glyceride, from the non-saponin fraction of P. ginseng extract. Methods: We explored effects of acute or sub-chronic administration of panaxcerol D on cognitive function in scopolamine- or Aß25-35 peptide-treated mice measured by several behavioral tests. After behavioral tests, we tried to unveil the underlying mechanism of panaxcerol D on its cognitive function by Western blotting. Results: We found that pananxcerol D reversed short-term, long-term and object recognition memory impairments. The decreased extracellular signal-regulated kinases (ERK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) in scopolamine-treated mice was normalized by acute administration of panaxcerol D. Glial fibrillary acidic protein (GFAP), caspase 3, NF-kB p65, synaptophysin and brain-derived neurotrophic factor (BDNF) expression levels in Aß25-35 peptide-treated mice were modulated by sub-chronic administration of panaxcerol D. Conclusion: Pananxcerol D could improve memory impairments caused by cholinergic blockade or Aß accumulation through increased phosphorylation level of ERK or its anti-inflammatory effect. Thus, panaxcerol D as one of non-saponin compounds could be used as an active ingredient of P. ginseng for improving cognitive function.

5.
Behav Brain Res ; 461: 114836, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38145873

ABSTRACT

Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Euphausiacea , Humans , Animals , Aged , Scopolamine/pharmacology , Euphausiacea/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Maze Learning , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Cholinergic Agents/pharmacology , Hippocampus/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
6.
Biomed Pharmacother ; 168: 115639, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812895

ABSTRACT

Haloperidol, one of the representative typical antipsychotics, is on the market for schizophrenia but shows severe adverse effects such as extrapyramidal symptoms (EPS) or cognitive impairments. Oleanolic acid (OA) is known to be effective for tardive dyskinesia which is induced by long-term treatment with L-DOPA. This study aimed to investigate whether OA could ameliorate EPS or cognitive impairment induced by haloperidol. The balance beam, catalepsy response, rotarod and vacuous chewing movement (VCM) tests were performed to measure EPS and the novel object recognition test was used to estimate haloperidol-induced cognitive impairment. Levels of dopamine and acetylcholine, the phosphorylation levels of c-AMP-dependent protein kinase A (PKA) and its downstream signaling molecules were measured in the striatum. OA significantly attenuated EPS and cognitive impairment induced by haloperidol without affecting its antipsychotic properties. Valbenazine only ameliorated VCM. Also, OA normalised the levels of dopamine and acetylcholine in the striatum which were increased by haloperidol. Furthermore, the increased phosphorylated PKA, extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) levels and c-FOS expression level induced by haloperidol were significantly decreased by OA in the striatum. In addition, cataleptic behaviour of haloperidol was reversed by sub-effective dose of H-89 with OA. These results suggest that OA can alleviate EPS and cognitive impairment induced by antipsychotics without interfering with antipsychotic properties via regulating neurotransmitter levels and the PKA signaling pathway in the striatum. Therefore, OA is a potential candidate for treating EPS and cognitive impairment induced by antipsychotics.


Subject(s)
Antipsychotic Agents , Oleanolic Acid , Mice , Animals , Haloperidol/adverse effects , Antipsychotic Agents/adverse effects , Dopamine , Acetylcholine , Signal Transduction
7.
Life Sci ; 333: 122147, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37802198

ABSTRACT

AIMS: Menopause is a natural process in women that can lead to post-menopausal syndrome with symptoms such as hot flushes, weight gain, anxiety, cognitive decline, and depression. Hormonal replacement therapy is commonly prescribed. However, it has serious adverse effects. Herbal medicinal products and isoflavones are used as alternatives. D-Pinitol found in Pinaceae and Fabaceae families has anti-inflammatory and antioxidant effects. However, it has not received as much attention as isoflavones. In this study, we investigated whether D-pinitol could alleviate post-menopausal symptoms using an ovariectomized (OVX) mouse model. MAIN METHODS: Female ICR mice were divided into six groups: sham (vehicle), OVX (vehicle), OVX + D-pinitol (10, 30, 100 mg/kg, p.o.), and OVX + estradiol (0.5 mg/kg, s.c.). Treatment with vehicle, D-pinitol, and estradiol began at seven weeks post ovariectomy. We employed several behavioral tests, hot-flush test, and Western blot analysis. KEY FINDINGS: We found that D-pinitol treatment (30, 100 mg/kg, p.o.) reversed cognitive dysfunction in OVX mice (novel object recognition and Y-maze test). Additionally, D-pinitol alleviated anxiety-like behaviors (elevated plus-maze) and reversed depressive-like behaviors (splash test, tail suspension test). It also normalized increased basal tail skin temperature in OVX mice. Moreover, D-pinitol administration reversed decreased expression of ERß and synaptophysin and phosphorylation of ERK and PI3K-Akt-GSK-3ß induced by OVX in the hippocampus and prefrontal cortex. SIGNIFICANCE: These findings indicate that D-pinitol might be a promising candidate for treating post-menopausal symptoms by increasing ERß and synaptophysin expression levels and activation of ERK or PI3K-Akt-GSK-3ß signaling pathway, at least in part.


Subject(s)
Isoflavones , Postmenopause , Humans , Mice , Female , Animals , Glycogen Synthase Kinase 3 beta , Synaptophysin/pharmacology , Proto-Oncogene Proteins c-akt , Estrogen Receptor beta , Phosphatidylinositol 3-Kinases , Mice, Inbred ICR , Estradiol/pharmacology , Isoflavones/pharmacology , Ovariectomy/adverse effects
8.
Phytother Res ; 37(12): 5904-5915, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37654104

ABSTRACT

Schizophrenia is a chronic brain disorder characterized by positive symptoms (delusions or hallucinations), negative symptoms (impaired motivation or social withdrawal), and cognitive impairment. In the present study, we explored whether D-pinitol could ameliorate schizophrenia-like behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Acoustic startle response test was conducted to evaluate the effects of D-pinitol on sensorimotor gating function. Social interaction and novel object recognition tests were employed to measure the impact of D-pinitol on social behavior and cognitive function, respectively. Additionally, we examined whether D-pinitol affects motor coordination. Western blotting was conducted to investigate the mechanism of action of D-pinitol. Single administration of D-pinitol at 30, 100, or 300 mg/kg improved the sensorimotor gating deficit induced by MK801 in the acoustic startle response test. D-Pinitol also reversed social behavior deficits and cognitive impairments induced by MK-801 without causing any motor coordination deficits. Furthermore, D-pinitol reversed increased expression levels of pNF-kB induced by MK-801 treatment and consequently increased expression levels of TNF-α and IL-6 in the prefrontal cortex. These results suggest that D-pinitol could be a potential candidate for treating sensorimotor gating deficits and cognitive impairment observed in schizophrenia by down-regulating transcription factor NF-κB and pro-inflammatory cytokines in the prefrontal cortex.


Subject(s)
Cognitive Dysfunction , Schizophrenia , Mice , Animals , Dizocilpine Maleate/adverse effects , Reflex, Startle/physiology , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy
9.
Eur J Pharmacol ; 956: 175954, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37541369

ABSTRACT

Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.


Subject(s)
Depression , Oleanolic Acid , Mice , Animals , Male , Female , Depression/etiology , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Synaptophysin/metabolism , Neuroinflammatory Diseases , Maternal Deprivation , Hippocampus , Ursolic Acid
10.
J Ethnopharmacol ; 317: 116800, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37331451

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua L. (Asteraceae) has been used as an antipyretic and anti-parasitic drug in traditional medicine for more than 2000 years. It has also been prescribed to treat symptoms caused by deficiency of Yin, which might be observed in menopausal state from the point of view of traditional medicine. AIM OF THE STUDY: We hypothesized that A. annua might be useful for treating menopausal disorders with less adverse effects than hormone replacement therapy. Thus, the aim of the present study was to investigate effects of A. annua on postmenopausal symptoms of ovariectomized (OVX) mice. MATERIALS AND METHODS: OVX mice were employed as a model for postmenopausal disorders. Mice were treated with a water extract of A. annua (EAA; 30, 100 or 300 mg/kg, p.o.) or 17ß-estradiol (E2; 0.5 mg/kg, s.c.) for 8 weeks. Open field test (OFT), novel object recognition task (NOR), Y-maze test, elevated plus maze test (EPM), splash test and tail suspension test (TST) were conducted to determine whether EAA could ameliorate postmenopausal symptoms. Phosphorylated levels of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and glycogen synthase kinase-3ß (GSK-3ß), ß-catenin and expression level of synaptophysin in the cortex and hippocampus were evaluated by Western blot analysis. RESULTS: EAA treatment significantly increased the discrimination index in NOR, decreased the time in closed arm than in open arm in EPM, increased grooming time in splash test, and decreased immobility time in TST, as did E2 treatment. In addition, decreased phosphorylation levels of ERK, Akt, GSK-3ß, and ß-catenin and expression levels of synaptophysin in the cortex and hippocampus after OVX were reversed by administration of EAA and E2. CONCLUSION: These results suggest that A. annua can ameliorate postmenopausal symptoms such as cognitive dysfunction, anxiety, anhedonia, and depression by activating ERK, Akt, and GSK-3ß/ß-catenin signaling pathway and hippocampal synaptic plasticity, and that A. annua would be a novel treatment for postmenopausal symptoms.


Subject(s)
Artemisia annua , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta , beta Catenin/metabolism , Synaptophysin , Postmenopause , Extracellular Signal-Regulated MAP Kinases/metabolism
11.
Article in English | MEDLINE | ID: mdl-36191804

ABSTRACT

As a heterogeneous disorder, schizophrenia is known to be associated with neuroinflammation. A recent study showed that several cytokines are higher in the plasma and cerebrospinal fluid of schizophrenia patients. Lansoprazole, a proton pump inhibitor used for treating erosive esophagitis, has been reported to reduce INF-γ-induced neurotoxicity and decrease inflammatory cytokines including IL-1ß, IL-6, and TNF-α. These findings persuaded us to examine whether lansoprazole ameliorates schizophrenia-like symptoms. The schizophrenia mouse model was induced by the acute administration of MK-801, an NMDA receptor antagonist. Sensorimotor gating, Barnes maze, and social novelty preference tests were conducted to evaluate schizophrenia-like behaviors. We found that lansoprazole (0.3, 1, or 3 mg/kg) ameliorated sensorimotor gating deficits, spatial learning, and social deficits caused by MK-801 treatment (0.2 mg/kg). The catalepsy test, balance beam test, and rotarod test were performed to reveal the adverse effects of lansoprazole on motor coordination. The behavioral results indicated that lansoprazole did not result in any motor function deficits. Moreover, lansoprazole decreased inflammatory cytokines including IL-6 and TNF-α only in the cortex, but not in the hippocampus. Collectively, these results suggest that lansoprazole could be a potential candidate for treating schizophrenia patients who suffer from sensorimotor gating deficits or social disability without any motor-related adverse effects.


Subject(s)
Lansoprazole , Schizophrenia , Animals , Mice , Dizocilpine Maleate/pharmacology , Interleukin-6 , Lansoprazole/pharmacology , Lansoprazole/therapeutic use , Proton Pump Inhibitors , Receptors, N-Methyl-D-Aspartate , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Tumor Necrosis Factor-alpha/drug effects , Disease Models, Animal
12.
BMC Complement Med Ther ; 22(1): 215, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948926

ABSTRACT

BACKGROUND: Cordia myxa L. (Boraginaceae) is widely distributed in tropical regions and it's fruits, leaves and stem bark have been utilized in folk medicine for treating trypanosomiasis caused by Trypanosoma cruzi. A population-based study showed that T. cruzi infection is associated with cognitive impairments. Therefore, if C. myxa has ameliorating activities on cognitive function, it would be useful for both T. cruzi infection and cognitive impairments. METHODS: In this study, we evaluated the effects of an ethanol extract of leaves of C. myxa (ELCM) on memory impairments and sensorimotor gating deficits in mice. The phosphorylation level of protein was observed by the Western blot analysis. RESULTS: The administration of ELCM significantly attenuated scopolamine-induced cognitive dysfunction in mice, as measured by passive avoidance test and novel object recognition test. Additionally, in the acoustic startle response test, we observed that the administration of ELCM ameliorated MK-801-induced prepulse inhibition deficits. We found that these behavioral outcomes were related with increased levels of phosphorylation phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3ß) in the cortex and extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus by western blot analysis. CONCLUSIONS: These results suggest that ELCM would be a potential candidate for treating cognitive dysfunction and sensorimotor gating deficits observed in individuals with neurodegenerative diseases.


Subject(s)
Cordia , Animals , Cognition , Ethanol , Glycogen Synthase Kinase 3 beta/pharmacology , Mice , Mice, Inbred ICR , Phosphatidylinositol 3-Kinases , Plant Extracts/pharmacology , Plant Leaves , Reflex, Startle
13.
Behav Brain Res ; 426: 113836, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35278481

ABSTRACT

Current antipsychotics have limited effects on the cognitive deficits of schizophrenia patients, therefore, cognitive remediation has been applied to schizophrenia patients to ameliorate cognitive dysfunction. However, the neurobiological mechanisms of cognitive training programs have not been well studied because established animal models are not suitable or because repetitive training has not been introduced in such animal models. In the present study, we employed Toll-like receptor 2 knockout (TLR2 KO) mouse as a schizophrenia mouse model and evaluated the effects of repetitive training as cognitive remediation therapy for schizophrenia. TLR2 KO mice could fully learn the Barnes maze paradigm through repetitive training to improve memory retrieval and reversal learning ability, although the learning speed was slower than that of wild-type (WT) animals. In addition, highly repetitive training activated the neuronal cells in the prefrontal cortex, hippocampal CA3 and hippocampal DG regions of TLR2 KO mice, similar to WT mice. These results indicated that TLR2 KO mouse would be a useful tool for studying the neurobiological mechanisms of cognitive remediation in schizophrenia.


Subject(s)
Cognition , Toll-Like Receptor 2 , Animals , Hippocampus/metabolism , Humans , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Reversal Learning/physiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism
14.
J Ethnopharmacol ; 285: 114864, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34822958

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scrophularia buergeriana has been used for traditional medicine as an agent for reducing heat in the blood and for nourishing kidney 'Yin'. Therefore, S. buergeriana might be a potential treatment for mental illness, especially schizophrenia, which may be attenuated by supplying kidney Yin and reducing blood heat. In a pilot study, we found that S. buergeriana alleviated sensorimotor gating dysfunction induced by MK-801. AIM OF THE STUDY: In the present study, we attempted to reveal the active component(s) of S. buergeriana as a candidate for treating sensorimotor gating dysfunction, and we identified 4-methoxycinnamic acid. We explored whether 4-methoxycinnamic acid could affect schizophrenia-like behaviors induced by hypofunction of the glutamatergic neurotransmitter system. MATERIALS AND METHODS: Mice were treated with 4-methoxycinnamic acid (3, 10, or 30 mg/kg, i.g.) under MK-801-induced schizophrenia-like conditions. The effect of 4-methoxycinnamic acid on schizophrenia-like behaviors were explored using several behavioral tasks. We also used Western blotting to investigate which signaling pathway(s) is involved in the pharmacological activities of 4-methoxycinnamic acid. RESULTS: 4-Methoxycinnamic acid ameliorated MK-801-induced prepulse inhibition deficits, social interaction disorders and cognitive impairment by regulating the phosphorylation levels of PI3K, Akt and GSK-3ß signaling in the prefrontal cortex. And there were no adverse effects in terms of catalepsy and motor coordination impairments. CONCLUSION: Collectively, 4-methoxycinnamic acid would be a potential candidate for treating schizophrenia with fewer adverse effects, especially the negative symptoms and cognitive dysfunctions.


Subject(s)
Cinnamates/therapeutic use , Dizocilpine Maleate/toxicity , Schizophrenia/chemically induced , Animals , Behavior, Animal/drug effects , Blotting, Western , Catalepsy/chemically induced , Catalepsy/drug therapy , Cinnamates/chemistry , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Male , Medicine, Traditional , Mice , Mice, Inbred ICR , Motor Activity/drug effects , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Schizophrenia/drug therapy , Scrophularia/chemistry , Signal Transduction/drug effects
15.
Life Sci ; 262: 118497, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32987062

ABSTRACT

The importance of alterations in bidirectional communication between gut and brain has become obvious in neuropsychiatric disorders. Gastrointestinal (GI) disturbances are very common in autism spectrum disorders (ASD), and the GI microbiota profiles in children with ASD are significantly different from those in the general population. Fragile X syndrome (FXS) is an inheritable developmental disability in humans, and patients with FXS exhibit autistic behaviors such as mental retardation and impaired social communication or interaction. We hypothesized that an increase in specific gut microbiota by fecal microbiota transplantation (FMT) would mitigate autistic-like behaviors. To test this hypothesis, we measured the effects of FMT from normal mice to Fmr1 KO mice on autistic-like behaviors using several behavioral tests. Because the amounts of A. muciniphila in Fmr1 KO mice was very low, we assessed A. muciniphila population, tested the expression of MUC2, and analyzed goblet cells in the gut after the FMT. We found that FMT ameliorated autistic-like behaviors, especially memory deficits and social withdrawal, and we observed that the levels of A. muciniphila were normalized to wild-type levels. In addition, FMT attenuated the increased levels of TNFα and Iba1 in the brains of Fmr1 KO mice. These results suggest that FMT could be a useful tool for the treatments of cognitive deficits and social withdrawal symptoms observed in FXS or ASD because it increases the population of A. muciniphila and decreases TNFα and Iba1 levels.


Subject(s)
Autistic Disorder/therapy , Fecal Microbiota Transplantation/methods , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/therapy , Gastrointestinal Microbiome , Animals , Autistic Disorder/microbiology , Behavior, Animal/physiology , Brain/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/therapy , Disease Models, Animal , Female , Fragile X Syndrome/microbiology , Fragile X Syndrome/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
J Ethnopharmacol ; 259: 112843, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32380246

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Vitex rotundifolia L. (Verbenaceae) has been used in traditional medicine as sedative or analgesic agent for headache. Recent population-based cohort studies have shown that headache including migraines is a risk factor for dementia. Thus, the fruit of V. rotundifolia may be useful for treating cognitive dysfunction observed in dementia. AIM OF THE STUDY: We had previously found that the ethanolic extract of the fruit of V. rotundifolia ameliorated cognitive dysfunction and isolated casticin as an active compound. In the present study, we studied the effect of casticin on a mouse model of cognitive impairment induced by scopolamine. MATERIALS AND METHODS: Mice were treated with the ethanolic extract of the fruit of V. rotundifolia (EEVR; 30, 100 or 300 mg/kg, p.o.) or casticin (0.3, 1 or 3 mg/kg, p.o.). We examined the effect of casticin or EEVR using the passive avoidance test, the Morris water maze test and the novel object recognition test. Scopolamine (1 mg/kg, i.p.) was used to induce cognitive impairment by blocking cholinergic neurotransmitter system. We investigated the effects of casticin on acetylcholinesterase (AchE) activity and the phosphorylation levels of extracellular signal-regulated kinase (ERK), cAMP response element binding protein (CREB), and the expression levels of brain-derived neurotrophic factor (BDNF). RESULTS: EEVR (100 and 300 mg/kg, p.o.) significantly ameliorated the latency in the passive avoidance test, and casticin (1 and 3 mg/kg, p.o.) also significantly improved the latency in the passive avoidance test, novel object preference in the novel object recognition test, and swimming time in the target quadrant of the Morris water maze test. Casticin also decreased AChE activity in ex vivo analysis and increased the phosphorylation levels of memory-related signaling molecules, such as ERK, CREB and BDNF in the cortex. CONCLUSION: These results suggest that casticin ameliorates cholinergic blockade-induced cognitive impairment, in part, through the inhibition of AChE and the activation of the ERK-CREB-BDNF signaling pathway. Taken together, the results suggest that casticin may be useful for treating the cognitive dysfunction observed during cholinergic impairment.


Subject(s)
Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Flavonoids/pharmacokinetics , Learning/drug effects , Scopolamine/pharmacology , Acetylcholinesterase/metabolism , Animals , Avoidance Learning/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/enzymology , Cyclic AMP Response Element-Binding Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavonoids/chemistry , Flavonoids/isolation & purification , GPI-Linked Proteins/metabolism , Hippocampus/drug effects , Male , Mice , Morris Water Maze Test/drug effects , Phosphorylation , Recognition, Psychology/drug effects , Signal Transduction/drug effects
17.
J Ethnopharmacol ; 258: 112923, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32360798

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Green tea has been used as a traditional medicine to control brain function and digestion. Recent works suggest that drinking green tea could prevent cognitive function impairment. During tea manufacturing processes, such as brewing and sterilization, green tea catechins are epimerized. However, the effects of heat-epimerized catechins on cognitive function are still unknown. To take this advantage, we developed a new green tea extract, high temperature processed-green tea extract (HTP-GTE), which has a similar catechin composition to green tea beverages. AIM OF THE STUDY: This study aimed to investigate the effect of HTP-GTE on scopolamine-induced cognitive dysfunction and neuronal differentiation, and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS: The neuronal differentiation promoting effects of HTP-GTE in SH-SY5Y cells was assessed by evaluating neurite length and the expression level of synaptophysin. The DNA methylation status at the synaptophysin promoter was determined in differentiated SH-SY5Y cells and in the hippocampi of mice. HTP-GTE was administered for 10 days at doses of 30, 100 and 300 mg/kg (p.o.) to mice, and its effects on cognitive functions were measured by Y-maze and passive avoidance tests under scopolamine-induced cholinergic blockade state. RESULTS: HTP-GTE induced neuronal differentiation and neurite outgrowth via the upregulation of synaptophysin gene expression. These beneficial effects of HTP-GTE resulted from reducing DNA methylation levels at the synaptophysin promoter via the suppression of DNMT1 activity. The administration of HTP-GTE ameliorated cognitive impairments in a scopolamine-treated mouse model. CONCLUSIONS: These results suggest that HTP-GTE could alleviate cognitive impairment by regulating synaptophysin expression and DNA methylation levels. Taken together, HTP-GTE would be a promising treatment for the cognitive impairment observed in dysfunction of the cholinergic neurotransmitter system.


Subject(s)
Catechin/pharmacology , Memory Disorders/drug therapy , Plant Extracts/pharmacology , Tea/chemistry , Animals , Avoidance Learning/drug effects , Catechin/chemistry , Catechin/isolation & purification , Cell Line, Tumor , DNA Methylation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Hot Temperature , Humans , Male , Maze Learning/drug effects , Memory Disorders/physiopathology , Mice , Mice, Inbred ICR , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Scopolamine
18.
Br J Pharmacol ; 177(14): 3197-3209, 2020 07.
Article in English | MEDLINE | ID: mdl-32133639

ABSTRACT

BACKGROUND AND PURPOSE: Alzheimer's disease (AD) is the most prevalent disease associated with cognitive dysfunction. Current AD therapeutic agents have several gastrointestinal or psychological adverse effects and therefore, novel therapeutic agents with fewer adverse effects must be developed. Previously, we demonstrated that oleanolic acid, which is similar in chemical structure to maslinic acid, ameliorates cognitive impairment through the activation of tropomyosin receptor kinase (TrkB)-ERK-cAMP response element-binding protein (CREB) phosphorylation and increased levels of brain-derived neurotrophic factor (BDNF). In the present study, we investigate the effect of maslinic acid on cholinergic blockade-induced memory impairment in mice. METHODS AND KEY RESULTS: Maslinic acid reversed scopolamine-induced memory impairment, as determined by the Y-maze, passive avoidance and Morris water maze tests. In addition, we also observed that ERK-CREB, PI3K and PKB (Akt) phosphorylation levels were increased by maslinic acid administration in the mouse hippocampus. Moreover, we determined that the effects of maslinic acid on scopolamine-induced memory impairment in the passive avoidance test were abolished by a specific TrkB receptor antagonist (ANA-12). Additionally, we observed similar temporal changes in the expression levels between BDNF and tissue plasminogen activator in the hippocampus. CONCLUSION AND IMPLICATIONS: These findings suggest that maslinic acid enhances cognitive function through the activation of BDNF and its downstream pathway signalling in the hippocampus and that it might be a potential therapeutic agent for cognitive decline, such as that observed in AD.


Subject(s)
Cognitive Dysfunction , Tissue Plasminogen Activator , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cholinergic Agents , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/metabolism , Maze Learning , Mice , Scopolamine/toxicity , Triterpenes
19.
J Pharm Pharmacol ; 72(1): 149-160, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31713882

ABSTRACT

OBJECTIVES: A botanical drug derived from the ethanolic extract composed of Clematis chinensis Osbeck (Ranunculaceae), Trichosanthes kirilowii Maximowicz (Cucurbitaceae) and Prunella vulgaris Linné (Lamiaceae) has been used to ameliorate rheumatoid arthritis as an ethical drug in Korea. In our study, we investigated the effect of this herbal complex extract (HCE) on schizophrenia-like behaviours induced by MK-801. METHODS: HCE (30, 100 or 300 mg/kg, p.o) was orally administered to male ICR mice to a schizophrenia-like animal model induced by MK-801. We conducted an acoustic startle response task, an open-field task, a novel object recognition task and a social novelty preference task. KEY FINDINGS: We found that a single administration of HCE (100 or 300 mg/kg) ameliorated MK-801-induced abnormal behaviours including sensorimotor gating deficits and social or object recognition memory deficits. In addition, MK-801-induced increases in phosphorylated Akt and GSK-3ß expression levels in the prefrontal cortex were reversed by HCE (30, 100 or 300 mg/kg). CONCLUSIONS: These results imply that HCE ameliorates MK-801-induced dysfunctions in prepulse inhibition, social interactions and cognitive function, partly by regulating the Akt and GSK-3ß signalling pathways.


Subject(s)
Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Cognition/drug effects , Cognitive Dysfunction/prevention & control , Gait Disorders, Neurologic/prevention & control , Plant Extracts/pharmacology , Prefrontal Cortex/drug effects , Schizophrenia/prevention & control , Sensory Gating/drug effects , Animals , Clematis , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Disease Models, Animal , Dizocilpine Maleate , Gait Disorders, Neurologic/chemically induced , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/psychology , Glycogen Synthase Kinase 3 beta/metabolism , Locomotion/drug effects , Male , Mice, Inbred ICR , Phosphorylation , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Proto-Oncogene Proteins c-akt/metabolism , Prunella , Recognition, Psychology/drug effects , Reflex, Startle/drug effects , Schizophrenia/chemically induced , Schizophrenic Psychology , Social Behavior , Trichosanthes
20.
J Med Food ; 22(7): 685-695, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31225769

ABSTRACT

The leaves of Aster glehni Fr. Schm. (Asteraceae) have been used to treat insomnia in Korea. Insomnia is a common adverse effect of therapeutic agents for Alzheimer's disease (AD), and the control of sleep disturbance may prevent dementia. We hypothesized that the leaves of A. glehni can attenuate cognitive dysfunctions observed in AD. We observed the ameliorating effects of the ethanolic extract of leaves of A. glehni (AG-D) on memory dysfunction through the Morris water maze test, the passive avoidance test, and the Y-maze test. We performed acetylcholinesterase (AChE) activity assay and Western blotting to determine the mechanism of action of AG-D. AG-D significantly attenuated memory dysfunction observed in the above behavior studies and inhibited the activity of AChE. AG-D also increased the levels of phosphorylation extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase 3ß (GSK-3ß) and the expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampi. These results suggest that AG-D ameliorates memory impairments by AChE inhibition and activation of ERK-CREB-BDNF and PI3K-Akt-GSK-3ß signaling pathways. Taken together, this study suggests that AG-D could be used as a potential treatment for cognitive dysfunction.


Subject(s)
Aster Plant/chemistry , Cognitive Dysfunction/drug therapy , Plant Extracts/administration & dosage , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/psychology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Maze Learning , Memory/drug effects , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Scopolamine/adverse effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...