Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Serious Games ; 11: e49216, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819707

ABSTRACT

BACKGROUND: Articulation disorder decreases the clarity of language and causes a decrease in children's learning and social ability. The demand for non-face-to-face treatment is increasing owing to the limited number of therapists and geographical or economic constraints. Non-face-to-face speech therapy programs using serious games have been proposed as an alternative. OBJECTIVE: The aim of this study is to investigate the efficacy of home therapy on logopedic and phoniatric abilities in children with articulation disorder using the Smart Speech game interface. METHODS: This study is a prospective single-arm clinical trial. Children with articulation disorders, whose Urimal Test of Articulation and Phonology (U-TAP) was -2 SDs or less and the Receptive and Expressive Vocabulary Test score was -1 SD or more, were enrolled. A preliminary evaluation (E0) was conducted to check whether the children had articulation disorders, and for the next 4 weeks, they lived their usual lifestyle without other treatments. Prior to the beginning of the training, a pre-evaluation (E1) was performed, and the children trained at home for ≥30 minutes per day, ≥5 times a week, over 4 weeks (a total of 20 sessions). The Smart Speech program comprised oral exercise training, breathing training, and speech training; the difficulty and type of the training were configured differently according to the participants' articulation error, exercise, and vocal ability. After the training, postevaluation (E2) was performed using the same method. Finally, 8 weeks later, postevaluation (E3) was performed as a follow-up. A voice evaluation included parameters such as maximum phonation time (MPT), fundamental frequency (F0), jitter, peak air pressure (relative average perturbation), pitch, intensity, and voice onset time. Articulation parameters included a percentage of correct consonants (PCC; U-TAP word-unit PCC, U-TAP sentence-unit PCC, and three-position articulation test) and alternate motion evaluation (diadochokinesis, DDK). Data obtained during each evaluation (E1-E2-E3) were compared. RESULTS: A total of 13 children with articulation disorders aged 4-10 years were enrolled in the study. In voice parameters, MPT, jitter, and pitch showed significant changes in repeated-measures ANOVA. However, only MPT showed significant changes during E1-E2 (P=.007) and E1-E3 (P=.004) in post hoc tests. Other voice parameters did not show significant changes. In articulation parameters, U-TAP, three-position articulation test (TA), and DDK showed significant changes in repeated-measures ANOVA. In post hoc tests, U-TAP (word, sentence) and TA showed significant changes during E1-E2 (P=.003, .04, and .01) and E1-E3 (P=.001, .03, and .003), and DDK showed significant changes during E1-E2 only (P=.03). CONCLUSIONS: Home-based serious games can be considered an alternative treatment method to improve language function. TRIAL REGISTRATION: Clinical Research Information Service KCT0006448; https://cris.nih.go.kr/cris/search/detailSearch.do/20119.

2.
ACS Appl Mater Interfaces ; 15(37): 43656-43666, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672801

ABSTRACT

Anode-free sodium-metal batteries (AFSMBs) are promising candidates for maximizing energy density and minimizing cost and safety hazards in the absence of metallic sodium during cell assembly. The practical implementation of AFSMBs is hindered by the low cycling stability of Na-metal plating and stripping, particularly under high areal capacities, due to unstable solid electrolyte interphase (SEI) layer formation with electrolyte decomposition and inactive dead Na formation. Here, we proposed an electroconductive electrolyte system consisting of liquid electrolytes that accept electrons at a certain energy level and form electronically conductive and solid electrolytes that prevent internal short circuit through low electronic conductivity. The electron acceptability and high electronic conductivity of the liquid electrolyte can suppress the irreversible electron transfer with electrolyte decomposition and reutilize the inactive dead metal, respectively. The functions of the system were demonstrated using a sodium biphenyl liquid electrolyte-NASICON solid electrolyte in a seawater battery (SWB) system, which features an infinite sodium source. The anode-free SWB cells achieved a high Coulombic efficiency of ≥99.9% for over 60 cycles at a high areal capacity of ∼24 mAh/cm2. This study provides insight into the Na plating/stripping properties in anode-free systems and proposes a significant strategy for improving the reversibility of metal anodes for various battery systems with solid electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...