Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 7702, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769593

ABSTRACT

East Asia has experienced strong warming since the 1960s accompanied by an increased frequency of heat waves and shrinking glaciers over the Tibetan Plateau and the Tien Shan. Here, we place the recent warmth in a long-term perspective by presenting a new spatially resolved warm-season (May-September) temperature reconstruction for the period 1-2000 CE using 59 multiproxy records from a wide range of East Asian regions. Our Bayesian Hierarchical Model (BHM) based reconstructions generally agree with earlier shorter regional temperature reconstructions but are more stable due to additional temperature sensitive proxies. We find a rather warm period during the first two centuries CE, followed by a multi-century long cooling period and again a warm interval covering the 900-1200 CE period (Medieval Climate Anomaly, MCA). The interval from 1450 to 1850 CE (Little Ice Age, LIA) was characterized by cooler conditions and the last 150 years are characterized by a continuous warming until recent times. Our results also suggest that the 1990s were likely the warmest decade in at least 1200 years. The comparison between an ensemble of climate model simulations and our summer reconstructions since 850 CE shows good agreement and an important role of internal variability and external forcing on multi-decadal time-scales.

2.
Sci Rep ; 7(1): 9981, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855516

ABSTRACT

Climate reconstructions reveal a strong winter amplification of the cooling over central and northern continental Europe during the Little Ice Age period (LIA, here defined as c. 16th-18th centuries) via persistent, blocked atmospheric conditions. Although various potential drivers have been suggested to explain the LIA cooling, no coherent mechanism has yet been proposed for this seasonal contrast. Here we demonstrate that such exceptional wintertime conditions arose from sea ice expansion and reduced ocean heat losses in the Nordic and Barents seas, driven by a multicentennial reduction in the northward heat transport by the subpolar gyre (SPG). However, these anomalous oceanic conditions were largely decoupled from the European atmospheric variability in summer. Our novel dynamical explanation is derived from analysis of an ensemble of last millennium climate simulations, and is supported by reconstructions of European temperatures and atmospheric circulation variability and North Atlantic/Arctic paleoceanographic conditions. We conclude that SPG-related internal climate feedbacks were responsible for the winter amplification of the European LIA cooling. Thus, characterization of SPG dynamics is essential for understanding multicentennial variations of the seasonal cycle in the European/North Atlantic sector.

3.
Science ; 335(6064): 76-9, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22223804

ABSTRACT

Attempts to predict changes in Atlantic Meridional Overturning Circulation (AMOC) have yielded little success to date. Here, we demonstrate predictability for monthly mean AMOC strength at 26.5°N for up to 4 years in advance. This AMOC predictive skill arises predominantly from the basin-wide upper-mid-ocean geostrophic transport, which in turn can be predicted because we have skill in predicting the upper-ocean zonal density difference. Ensemble forecasts initialized between January 2008 and January 2011 indicate a stable AMOC at 26.5°N until at least 2014, despite a brief wind-induced weakening in 2010. Because AMOC influences many aspects of climate, our results establish AMOC as an important potential carrier of climate predictability.

SELECTION OF CITATIONS
SEARCH DETAIL
...