Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nano Lett ; 22(17): 7087-7093, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36047707

ABSTRACT

Nanoscale, localized corrosion underpins billions of dollars in damage and material costs each year; however, the processes responsible have remained elusive due to the complexity of studying degradative material behavior at nanoscale liquid-solid interfaces. Recent improvements to liquid cell scanning/transmission electron microscopy and associated techniques enable this first look at the nanogalvanic corrosion processes underlying this widespread damage. Nanogalvanic corrosion is observed to initiate at the near-surface ferrite/cementite phase interfaces that typify carbon steel. In minutes, the corrosion front delves deeper into the material, claiming a thin layer of ferrite around all exposed phase boundaries before progressing laterally, converting the ferrite to corrosion product normal to each buried cementite grain. Over the following few minutes, the corrosion product that lines each cementite grain undergoes a volumetric expansion, creating a lateral wedging force that mechanically ejects the cementite grains from their grooves and leaves behind percolation channels into the steel substructure.


Subject(s)
Ferric Compounds , Steel , Carbon , Corrosion , Steel/chemistry
2.
iScience ; 24(12): 103394, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34901784

ABSTRACT

Li metal anodes are enticing for batteries due to high theoretical charge storage capacity, but commercialization is plagued by dendritic Li growth and short circuits when cycled at high currents. Applied pressure has been suggested to improve morphology, and therefore performance. We hypothesized that increasing pressure would suppress dendritic growth at high currents. To test this hypothesis, here, we extensively use cryogenic scanning electron microscopy to show that varying the applied pressure from 0.01 to 1 MPa has little impact on Li morphology after one deposition. We show that pressure improves Li density and preserves Li inventory after 50 cycles. However, contrary to our hypothesis, pressure exacerbates dendritic growth through the separator, promoting short circuits. Therefore, we suspect Li inventory is better preserved in cells cycled at high pressure only because the shorts carry a larger portion of the current, with less being carried by electrochemical reactions that slowly consume Li inventory.

3.
ACS Appl Mater Interfaces ; 13(27): 31668-31679, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34181387

ABSTRACT

Lithium-metal anodes can theoretically enable 10× higher gravimetric capacity than conventional graphite anodes. However, Li-metal anode cycling has proven difficult due to porous and dendritic morphologies, extensive parasitic solid electrolyte interphase reactions, and formation of dead Li. We systematically investigate the effects of applied interfacial pressure on Li-metal anode cycling performance and morphology in the recently developed and highly efficient 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane electrolyte. We present cycling, morphology, and impedance data at a current density of 0.5 mA/cm2 and a capacity of 2 mAh/cm2 at applied interfacial pressures of 0, 0.01, 0.1, 1, and 10 MPa. Cryo-focused ion beam milling and cryo-scanning electron microscopy imaging in cross section reveal that increasing the applied pressure during Li deposition from 0 to 10 MPa leads to greater than a fivefold reduction in thickness (and therefore volume) of the deposited Li. This suggests that pressure during cycling can have a profound impact on the practical volumetric energy density for Li-metal anodes. A "goldilocks zone" of cell performance is observed at intermediate pressures of 0.1-1 MPa. Increasing pressure from 0 to 1 MPa generally improves cell-to-cell reproducibility, cycling stability, and Coulombic efficiency. However, the highest pressure (10 MPa) results in high cell overpotential and evidence of soft short circuits, which likely result from transport limitations associated with increased pressure causing local pore closure in the separator. All cells exhibit at least some signs of cycling instability after 50 cycles when cycled to 2 mAh/cm2 with thin 50 µm Li counter electrodes, though instability decreases with increasing pressure. In contrast, cells cycled to only 1 mAh/cm2 perform well for 50 cycles, indicating that capacity plays an important role in cycling stability.

4.
Micron ; 119: 54-63, 2019 04.
Article in English | MEDLINE | ID: mdl-30660856

ABSTRACT

In the use of solution-based 3D nanoarchitectures for optics, drug delivery, and cancer treatment, the precise nanoparticle architecture morphologies, architecture sizes, interparticle distances, and the assembly stability are all critical to their functionality. 3D nanoparticle architectures in solution are difficult to characterize, as few techniques can provide individualized information on interparticle spacing (defined by linkage molecule), nanoparticle assembly size, morphology, and identification of false aggregation. Bulk characterization techniques, including small angle x-ray scattering, can provide architecture sizes, though they are unable to precisely measure differences within interparticle spacings for individual architectures and can falsely measure assemblies caused by non-linkage grouped nanoparticles. Two solution-based characterization techniques were used to determine which assembly type and linkage length would produce the fastest assembly rate for large DNA-directed gold nanoparticle assemblies. In-situ liquid-cell scanning transmission electron microscopy (LC-STEM), measured interparticle spacings between DNA-functionalized nanoparticles, and fluorescence correlation spectroscopy provided the bulk volume fraction of large and small assemblies for nanoparticle architectures that were assembled using two different types: (1) the hybrid assemblies join two complementary single-stranded DNA linkages, and (2) the bridged assemblies are comprised of single-stranded DNA (bridging component) that is double the length of two different complementary single-stranded DNA-functionalized gold nanoparticles. Assembly times were tested at 24-hrs intervals over 3 days. Statistics derived from the in-situ LC-STEM images provided data for interparticle distance measurements, which identified the fraction of nanoparticles within the images acquired that were at the expected double-stranded DNA-binding distance of the linkages (varied in three distances for each of the two different architectures). In general, longer linkage lengths assembled in the shortest amount of time. The bridged assemblies formed fewer large architectures at 24-hrs but ultimately assembled a greater fraction of nanoparticles, which was due to the longer functionalized DNA lengths for individual nanoparticles. Fluorescence correlation spectroscopy provided a bulk average of the gold nanoparticle assembly sizes over time, which supported the conclusions drawn from the in-situ LC-STEM data. The microscopy provided sub-2 nm precision in the interparticle distances between gold nanoparticles in a solution environment. This coupled microscopy and spectroscopy characterization approach can provide more detailed information than bulk characterization methods.


Subject(s)
DNA, Single-Stranded/metabolism , Gold/metabolism , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning Transmission/methods , Spectrometry, Fluorescence/methods , Kinetics , Metal Nanoparticles/chemistry , Time Factors
6.
RSC Adv ; 8(43): 24075-24083, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-35539206

ABSTRACT

The rising demand for food and energy crops has triggered interest in the use of nanoparticles for agronomy. Specifically, iron oxide-based engineered nanoparticles are promising candidates for next-generation iron-deficiency fertilizers. We used iron oxide and hybrid Pt-decorated iron oxide nanoparticles, at low and high concentrations, and at varied pHs, to model seed pre-soaking solutions for investigation of their effect on embryonic root growth in legumes. This is an environmentally friendly approach, as it uses less fertilizer, therefore less nanoparticles in contact with the soil. Analysis from varied material characterization techniques combined with a statistical analysis method found that iron oxide nanoparticles could enhance root growth by 88-366% at low concentrations (5.54 × 10-3 mg L-1 Fe). Hybrid Pt-decorated iron oxide nanoparticles and a higher concentration of iron oxide nanoparticles (27.7 mg L-1 Fe) showed reduced root growth. The combined materials characterization and statistical analysis used here can be applied to address many environmental factors to finely tune the development of vital nanofertilizers for high efficiency food production.

7.
ACS Nano ; 11(11): 11194-11205, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29112807

ABSTRACT

To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.

8.
Nano Lett ; 17(5): 2757-2764, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28384403

ABSTRACT

We report a new hybrid integration scheme that offers for the first time a nanowire-on-lead approach, which enables independent electrical addressability, is scalable, and has superior spatial resolution in vertical nanowire arrays. The fabrication of these nanowire arrays is demonstrated to be scalable down to submicrometer site-to-site spacing and can be combined with standard integrated circuit fabrication technologies. We utilize these arrays to perform electrophysiological recordings from mouse and rat primary neurons and human induced pluripotent stem cell (hiPSC)-derived neurons, which revealed high signal-to-noise ratios and sensitivity to subthreshold postsynaptic potentials (PSPs). We measured electrical activity from rodent neurons from 8 days in vitro (DIV) to 14 DIV and from hiPSC-derived neurons at 6 weeks in vitro post culture with signal amplitudes up to 99 mV. Overall, our platform paves the way for longitudinal electrophysiological experiments on synaptic activity in human iPSC based disease models of neuronal networks, critical for understanding the mechanisms of neurological diseases and for developing drugs to treat them.


Subject(s)
Nanowires/chemistry , Neural Stem Cells/metabolism , Neurons/metabolism , Action Potentials , Animals , Cells, Cultured , Humans , Lab-On-A-Chip Devices , Mice , Microelectrodes , Neural Stem Cells/cytology , Neurons/cytology , Particle Size , Rats
9.
Nano Lett ; 17(4): 2189-2196, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28334533

ABSTRACT

Alloyed and compound contacts between metal and semiconductor transistor channels enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. Here, we report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In0.53Ga0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit a solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. In this study, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.

10.
Nano Lett ; 16(7): 4158-65, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27254592

ABSTRACT

Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

11.
ACS Nano ; 10(6): 5670-8, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27243921

ABSTRACT

Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. Here, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge-discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed for the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Our results show that electrochemically induced solid-solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.

12.
Nanoscale ; 8(5): 2601-12, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26524426

ABSTRACT

The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4](-). The reaction sequence begins with the auto-reduction of aqueous [AuCl4](-) by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate end-derivatized PEO117-PPO47-PEO117 to yield a network polymer. Optical spectroscopy and TEM monitored the reduction of [AuCl4](-), formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multi-lamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Optical spectroscopy shows a notable red shift (Δλ ∼ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.

13.
Sci Rep ; 5: 17314, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26611405

ABSTRACT

Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. We report here detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates and utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2" sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase in the thickness of the grown layers for 20 µm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 µm dot diameter. We observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.

14.
Nano Lett ; 15(10): 6339-48, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26389786

ABSTRACT

We employed an in situ electrochemical cell in the transmission electron microscope (TEM) together with ex situ time-of-flight, secondary-ion mass spectrometry (TOF-SIMS) depth profiling, and FIB-helium ion scanning microscope (HIM) imaging to detail the structural and compositional changes associated with Na/Na(+) charging/discharging of 50 and 100 nm thin films of Sb. TOF-SIMS on a partially sodiated 100 nm Sb film gives a Na signal that progressively decreases toward the current collector, indicating that sodiation does not proceed uniformly. This heterogeneity will lead to local volumetric expansion gradients that would in turn serve as a major source of intrinsic stress in the microstructure. In situ TEM shows time-dependent buckling and localized separation of the sodiated films from their TiN-Ge nanowire support, which is a mechanism of stress-relaxation. Localized horizontal fracture does not occur directly at the interface, but rather at a short distance away within the bulk of the Sb. HIM images of FIB cross sections taken from sodiated half-cells, electrically disconnected, and aged at room temperature, demonstrate nonuniform film swelling and the onset of analogous through-bulk separation. TOF-SIMS highlights time-dependent segregation of Na within the structure, both to the film-current collector interface and to the film surface where a solid electrolyte interphase (SEI) exists, agreeing with the electrochemical impedance results that show time-dependent increase of the films' charge transfer resistance. We propose that Na segregation serves as a secondary source of stress relief, which occurs over somewhat longer time scales.

15.
ACS Nano ; 9(4): 4379-89, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25785517

ABSTRACT

Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm(2) leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. The effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. We discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.

16.
ACS Appl Mater Interfaces ; 6(21): 18569-76, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25285852

ABSTRACT

Using neutron reflectometry, we have determined the thickness and scattering length density profile of the electrode-electrolyte interface for the high-voltage cathode LiMn(1.5)Ni(0.5)O4 in situ at open circuit voltage and fully delithiated. Upon exposure to a liquid electrolyte, a thin 3.3 nm Li-rich interface forms due to the ordering of the electrolyte on the cathode surface. This interface changes in composition, as evident by an increase in the scattering length density of the new layer, with charging as the condensed layer evolves from being lithium rich to one containing a much higher concentration of F from the LiPF6 salt. These results show the surface chemistry evolves as a function of the potential.

17.
Nano Lett ; 14(6): 3445-52, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24823874

ABSTRACT

Carbonaceous materials have great potential for applications as anodes of alkali-metal ion batteries, such as Na-ion batteries and K-ion batteries (NIB and KIBs). We conduct an in situ study of the electrochemically driven sodiation and potassiation of individual carbon nanofibers (CNFs) by transmission electron microscopy (TEM). The CNFs are hollow and consist of a bilayer wall with an outer layer of disordered-carbon (d-C) enclosing an inner layer of crystalline-carbon (c-C). The d-C exhibits about three times volume expansion of the c-C after full sodiation or potassiation, thus suggesting a much higher storage capacity of Na or K ions in d-C than c-C. For the bilayer CNF-based electrode, a steady sodium capacity of 245 mAh/g is measured with a Coulombic efficiency approaching 98% after a few initial cycles. The in situ TEM experiments also reveal the mechanical degradation of CNFs through formation of longitudinal cracks near the c-C/d-C interface during sodiation and potassiation. Geometrical changes of the tube are explained by a chemomechanical model using the anisotropic sodiation/potassiation strains in c-C and d-C. Our results provide mechanistic insights into the electrochemical reaction, microstructure evolution and mechanical degradation of carbon-based anodes during sodiation and potassiation, shedding light onto the development of carbon-based electrodes for NIBs and KIBs.

18.
Microsc Microanal ; 20(2): 437-44, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24641789

ABSTRACT

The drying effect associated with utilizing transmission electron microscopy to study deoxyribonucleic acid (DNA)-coated gold nanoparticles (AuNPs) remains largely uninvestigated, though this technique is frequently utilized to characterize nanoparticle-DNA interactions. Investigation of the drying effect is essential to the progress of the many fields that utilize AuNPs, including cancer research. In this study, we compare DNA hybridization-directed nanoparticle assemblies with control samples omitting the necessary complementary DNA, effectively blocking directed assembly, in both the liquid state and the dry state, within a scanning transmission electron microscope. We show that the dry samples contain AuNPs spaced at significantly smaller intervals than identical samples measured in situ, with no dependence on the DNA bound to the AuNPs in the dry samples. A partially wet sample, with distances measured along the drying edge, provided an intermediate binding distance, strengthening the conclusion that drastic differences observed between the dry and in situ samples are due to a pronounced drying effect. This drying effect will falsely indicate certain grouping arrangements and will change the impression of the size of the groups formed, providing misinformation for the development of these controlled assemblies that could impact applications such as targeted drug vehicles for cancer treatment.


Subject(s)
DNA/analysis , Desiccation , Gold/chemistry , Microscopy, Electron, Scanning Transmission/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Artifacts
19.
Ultramicroscopy ; 127: 53-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22951261

ABSTRACT

Scanning transmission electron microscopy of various fluid and hydrated nanomaterial samples has revealed multiple imaging artifacts and electron beam-fluid interactions. These phenomena include growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. A key finding is that many artifacts are a result of indirect electron beam interactions, such as production of reactive radicals in the water by radiolysis, and the associated crystal growth. The results presented here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment.


Subject(s)
Artifacts , Microscopy, Electron, Scanning Transmission/methods , Nanostructures , Nanoparticles/chemistry , Nanostructures/chemistry , Water
20.
Microsc Microanal ; 18(3): 621-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22640968

ABSTRACT

Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...