Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Chem Biol ; 16(8): 920-929, 2020 08.
Article in English | MEDLINE | ID: mdl-32451508

ABSTRACT

The fundamental and assorted roles of ß-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on ß-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/ß)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical ß-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of ß-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of ß-1,3-glucans, which can be exploited for biotechnological applications.


Subject(s)
Glucan 1,3-beta-Glucosidase/chemistry , Glycoside Hydrolases/chemistry , beta-Glucans/chemistry , Amino Acid Sequence/genetics , Binding Sites/physiology , Catalytic Domain/physiology , Crystallography, X-Ray/methods , Glucan 1,3-beta-Glucosidase/metabolism , Glucans/chemistry , Glycosides/chemistry , Models, Molecular , Substrate Specificity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...