Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 253: 119176, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38768887

ABSTRACT

This study investigates spatiotemporal dynamics in metal sedimentation in the North American Great Lakes and their underlying biogeochemical controls. Bulk geochemical and isotope analyses of n = 72 surface and core sediment samples show that metal (Cu, Zn, Pb) concentrations and their isotopic compositions vary spatially across oligotrophic to mesotrophic settings, with intra-lake heterogeneity being similar or higher than inter-lake (basin-scale) variability. Concentrations of Cu, Zn, and Pb in sediments from Lake Huron and Lake Erie vary from 5 to 73 mg/kg, 18-580 mg/kg, and 5-168 mg/kg, respectively, but metal enrichment factors were small (<2) across the surface- and core sediments. The isotopic signatures of surface sediment Cu (δ65Cu between -1.19‰ and +0.96‰), Zn (δ66Zn between -0.09‰ and +0.41‰) and Pb (206/207Pb from 1.200 to 1.263) indicate predominantly lithogenic metal sourcing. In addition, temporal trends in sediment cores from Lake Huron and Lake Erie show uniform metal concentrations, minor enrichment, and Zn and Pb isotopic signatures suggestive of negligible in-lake biogeochemical fractionation. In contrast, Cu isotopic signatures and correlation to chlorophyll and macronutrient levels suggest more differentiation from source variability and/or redox-dependent fractionation, likely related to biological scavenging. Our results are used to derive baseline metal sedimentation fluxes and will help optimize water quality management and strategies for reducing metal loads and enrichment in the Great Lakes and beyond.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/analysis , Lakes/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Isotopes/analysis , Great Lakes Region , Metals, Heavy/analysis
2.
Sci Total Environ ; 904: 166360, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37595926

ABSTRACT

Copper (Cu) stable isotopes can elucidate the biogeochemical controls and sources governing Cu dynamics in aquatic environments, but their application in larger rivers and catchments remains comparatively scarce. Here, we use major and trace element hydrogeochemical data, Cu isotope analyses, and mixing modeling, to assess Cu loads and sources in two major river systems in Ontario, Canada. In both the Spanish River and Trent River catchments, aqueous hydrochemical compositions appeared reasonably consistent, but Cu concentrations were more variable spatially. In the Spanish River, waters near (historic) industrial mining activities displayed positive Cu isotope compositions (δ65CuSRM-976 between +0.75 ‰ and +1.01 ‰), but these signatures were gradually attenuated downstream by mixing with natural background waters (δ65Cu -0.65 ‰ to -0.16 ‰). In contrast, Trent River waters exhibited more irregular in-stream Cu isotope patterns (δ65Cu from -0.75 ‰ to +0.21 ‰), beyond the variability in Cu isotope signatures observed for adjacent agricultural soils (δ65Cu between -0.26 ‰ and +0.30 ‰) and lacking spatial correlation, reflective of the more diffuse sourcing and entwined endmember contributions to Cu loads in this catchment. This work shows that metal stable isotopes may improve our understanding of the sources and baseline dynamics of metals, even in large river systems.

3.
Sci Total Environ ; 838(Pt 2): 156084, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35605848

ABSTRACT

As a component of many minerals and an essential trace element in most aerobic organisms, the transition metal element Cu is important for studying reduction-oxidation (redox) interactions and metal cycling in the total environment (lithosphere, atmosphere, biosphere, hydrosphere, and anthroposphere). The "fractionation" or relative partitioning of the naturally occurring "heavy" (65Cu) and "light" (63Cu) isotope between two coexisting phases in a system occurs according to bonding environment and/or as a result of a slight difference in the rate at which these isotopes take part in physical processes and chemical reactions (in absence of equilibrium). Due to this behaviour, Cu isotopic analysis can be used to study a range of geochemical and biological processes that cannot be elucidated with Cu concentrations alone. The shift between Cu+ and Cu2+ is accompanied by a large degree of Cu isotope fractionation, enabling the Cu isotope to be applied as a vector in mineral exploration, tracer of origin, transport, and fate of metal contaminants in the environment, biomonitor, and diagnostic/prognostic marker of disease, among other applications. In this contribution, we (1) discuss the analytical protocols that are currently available to perform Cu isotopic analysis, (2) provide a compilation of published δ65Cu values for matrix reference materials, (3) review Cu isotope fractionation mechanisms, (4) highlight emerging applications of Cu isotopic analysis, and (5) discuss future research avenues.


Subject(s)
Copper , Isotopes , Chemical Fractionation , Copper/analysis , Isotopes/analysis , Metals , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL