Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675348

ABSTRACT

Axial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise.

2.
Opt Lett ; 49(4): 911-914, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359214

ABSTRACT

In this Letter, a method for the fabrication of bifocal lenses is presented by combining surface ablation and bulk modification in a single laser exposure followed by the wet etching processing step. The intensity of a single femtosecond laser pulse was modulated axially into two foci with a designed computer-generated hologram (CGH). Such pulse simultaneously induced an ablation region on the surface and a modified volume inside the fused silica. After etching in hydrofluoric acid (HF), the two exposed regions evolved into a bifocal lens. The area ratio (diameter) of the two lenses can be flexibly adjusted via control of the pulse energy distribution through the CGH. Besides, bifocal lenses with a center offset as well as convex lenses were obtained by a replication technique. This method simplifies the fabrication of micro-optical elements and opens a highly efficient and simple pathway for complex optical surfaces and integrated imaging systems.

3.
Nanomaterials (Basel) ; 14(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38334558

ABSTRACT

Emerging applications of optical technologies are driving the development of miniaturised light sources, which in turn require the fabrication of matching micro-optical elements with sub-1 mm cross-sections and high optical quality. This is particularly challenging for spatially constrained biomedical applications where reduced dimensionality is required, such as endoscopy, optogenetics, or optical implants. Planarisation of a lens by the Fresnel lens approach was adapted for a conical lens (axicon) and was made by direct femtosecond 780 nm/100 fs laser writing in the SZ2080™ polymer with a photo-initiator. Optical characterisation of the positive and negative fraxicons is presented. Numerical modelling of fraxicon optical performance under illumination by incoherent and spatially extended light sources is compared with the ideal case of plane-wave illumination. Considering the potential for rapid replication in soft polymers and resists, this approach holds great promise for the most demanding technological applications.

4.
Nano Lett ; 24(4): 1145-1152, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38194429

ABSTRACT

We present a novel technique of genetic transformation of bacterial cells mediated by high frequency electromagnetic energy (HF EME). Plasmid DNA, pGLO (5.4 kb), was successfully transformed into Escherichia coli JM109 cells after exposure to 18 GHz irradiation at a power density between 5.6 and 30 kW m-2 for 180 s at temperatures ranging from 30 to 40 °C. Transformed bacteria were identified by the expression of green fluorescent protein (GFP) using confocal scanning microscopy (CLSM) and flow cytometry (FC). Approximately 90.7% of HF EME treated viable E. coli cells exhibited uptake of the pGLO plasmid. The interaction of plasmid DNA with bacteria leading to transformation was confirmed by using cryogenic transmission electron microscopy (cryo-TEM). HF EME-induced plasmid DNA transformation was shown to be unique, highly efficient, and cost-effective. HF EME-induced genetic transformation is performed under physiologically friendly conditions in contrast to existing techniques that generate higher temperatures, leading to altered cellular integrity. This technique allows safe delivery of genetic material into bacterial cells, thus providing excellent prospects for applications in microbiome therapeutics and synthetic biology.


Subject(s)
Escherichia coli , Transformation, Bacterial , Plasmids/genetics , DNA/metabolism , Bacteria/genetics , Electromagnetic Radiation
5.
Bioengineering (Basel) ; 10(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38135945

ABSTRACT

This perspective is an overview of the recent advances in teeth microcrack (MC) research, where there is a clear tendency towards a shift from two-dimensional (2D) to three-dimensional (3D) examination techniques, enhanced with artificial intelligence models for data processing and image acquisition. X-ray micro-computed tomography combined with machine learning allows 3D characterization of all spatially resolved cracks, despite the locations within the tooth in which they begin and extend, and the arrangement of MCs and their structural properties. With photoluminescence and micro-/nano-Raman spectroscopy, optical properties and chemical and elemental composition of the material can be evaluated, thus helping to assess the structural integrity of the tooth at the MC site. Approaching tooth samples having cracks from different perspectives and using complementary laboratory techniques, there is a natural progression from 3D to multi-modal imaging, where the volumetric (passive: dimensions) information of the tooth sample can be supplemented by dynamic (active: composition, interaction) image data. Revelation of tooth cracks clearly shows the need to re-assess the role of these MCs and their effect on the structural integrity and longevity of the tooth. This provides insight into the nature of cracks in natural hard materials and contributes to a better understanding of how bio-inspired structures could be designed to foresee crack propagation in biosolids.

6.
J Am Chem Soc ; 145(42): 23027-23036, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37824218

ABSTRACT

A two-directional ferroelastic deformation in organic crystals is unprecedented owing to its anisotropic crystal packing, in contrast to isotropic symmetrical packing in inorganic compounds and polymers. Thereby, finding and constructing multidirectional ferroelastic deformations in organic compounds is undoubtedly complex and at once calls for deep comprehension. Herein, we demonstrate the first example of a two-directional ferroelastic deformation with a unique scissor-like movement in single crystals of trans-3-hexenedioic acid by the application of uniaxial compression stress. A detailed structural investigation of the mechanical deformation at the macroscopic and microscopic levels by three distinct force measurement techniques (including shear and three-point bending test), single crystal X-ray diffraction techniques, and polarized synchrotron-FTIR microspectroscopy highlighted that mechanical twinning promoted the deformation. The presence of two crystallographically equivalent faces and the herringbone arrangement promoted the two-directional ferroelastic deformation. In addition, anisotropic heat transfer properties in the parent and the deformed domains were investigated by thermal diffusivity measurement on all three axes using microscale temperature-wave analysis (µ-TWA). A correlation between the anisotropic structural arrangement and the difference in thermal diffusivity and mechanical behavior in the two-directional organoferroelastic deformation could be established. The structural and molecular level information from this two-directional ferroelastic deformation would lead to a more profound understanding of the structure-property relationship in multidirectional deformation in organic crystals.

7.
Nanomaterials (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764534

ABSTRACT

The interaction of two subsequent ultra-short sub-milli-Joule laser pulses with a thin water flow results in an emission of a strong single-cycle THz pulse associated with enhanced soft X-ray emission. In this paper, a chain of processes produced in this interaction is analyzed and compared with other THz generation studies. It is demonstrated that the enhanced THz and X-ray emissions are produced by an energetic electron beam accelerated in the interaction of a main laser pulse with liquid water ejected from the surface by the pre-pulse. This scheme thus provides an efficient laser energy conversion in a THz pulse, avoiding laser self-focusing and filamentation in air.

8.
Appl Spectrosc ; 77(9): 977-1008, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37464791

ABSTRACT

The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.


Subject(s)
Lasers, Semiconductor , Spectrophotometry, Infrared/methods
9.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37421030

ABSTRACT

Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080TM photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF2 substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 µm wavelengths since MLAs were only ∼10 µm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 µm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible-IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved.

10.
Opt Lett ; 48(11): 2841-2844, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262224

ABSTRACT

The formation mechanism of laser-induced periodic surface structures (LIPSS) has been a key to high-resolution sub-diffraction lithography or high-efficiency large-area nanotexturing. We show the evolution of LIPSS formation from a nanohole seed structure to high-spatial-frequency LIPSS by using a tightly focused and rectangular-shaped laser beam with different shape-polarization orientations. Formation of LIPSS based on light intensity distribution without invoking any long-range electromagnetic modes achieved quantitative match between modeling and experiment. Our results clearly show the entire step-like and deterministic process of LIPSS evolution based on experimental data and numerical simulations, revealing the dominant structural near-field enhancement on the ripple formation. A rectangular-shaped beam with an aspect ratio of 7:3 was used to break the symmetry of a circularly shaped focus. By azimuthally rotating the orientation of the focal spot and the polarization, it is possible to visualize the far-field effect for the initial seed structure formation and the competition between the far and near fields in the subsequent structure evolution.

11.
Nanomaterials (Basel) ; 13(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299699

ABSTRACT

The laser energy per unit surface, necessary to trigger material removal, decreases with the pulse shortening, becoming pulse-time independent in the sub-picosecond range. These pulses are shorter than the electron-to-ion energy transfer time and electronic heat conduction time, minimising the energy losses. Electrons receiving an energy larger than the threshold drag the ions off the surface in the mode of electrostatic ablation. We show that a pulse shorter than the ion period (Shorter-the-Limit (StL)) ejects conduction electrons with an energy larger than the work function (from a metal), leaving the bare ions immobile in a few atomic layers. Electron emission is followed by the bare ion's explosion, ablation, and THz radiation from the expanding plasma. We compare this phenomenon to the classic photo effect and nanocluster Coulomb explosions, and show differences and consider possibilities for detecting new modes of ablation experimentally via emitted THz radiation. We also consider the applications of high-precision nano-machining with this low intensity irradiation.

12.
Nanomaterials (Basel) ; 13(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37368324

ABSTRACT

Herein, we give an overview of several less explored structural and optical characterization techniques useful for biomaterials. New insights into the structure of natural fibers such as spider silk can be gained with minimal sample preparation. Electromagnetic radiation (EMR) over a broad range of wavelengths (from X-ray to THz) provides information of the structure of the material at correspondingly different length scales (nm-to-mm). When the sample features, such as the alignment of certain fibers, cannot be characterized optically, polarization analysis of the optical images can provide further information on feature alignment. The 3D complexity of biological samples necessitates that there be feature measurements and characterization over a large range of length scales. We discuss the issue of characterizing complex shapes by analysis of the link between the color and structure of spider scales and silk. For example, it is shown that the green-blue color of a spider scale is dominated by the chitin slab's Fabry-Pérot-type reflectivity rather than the surface nanostructure. The use of a chromaticity plot simplifies complex spectra and enables quantification of the apparent colors. All the experimental data presented herein are used to support the discussion on the structure-color link in the characterization of materials.

13.
Opt Express ; 31(9): 14796-14807, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157336

ABSTRACT

Femtosecond laser-induced deep-subwavelength structures have attracted much attention as a nanoscale surface texturization technique. A better understanding of the formation conditions and period control is required. Herein, we report a method of non-reciprocal writing via a tailored optical far-field exposure, where the period of ripples varies along different scanning directions, and achieve a continuous manipulation of the period from 47 to 112 nm (±4 nm) for a 100-nm-thick indium tin oxide (ITO) on glass. A full electromagnetic model was developed to demonstrate the redistributed localized near-field at different stages of ablation with nanoscale precision. It explains the formation of ripples and the asymmetry of the focal spot determines the non-reciprocity of ripple writing. Combined with beam shaping techniques, we achieved non-reciprocal writing (regarding scanning direction) using an aperture-shaped beam. The non-reciprocal writing is expected to open new paths for precise and controllable nanoscale surface texturing.

14.
Chem Asian J ; 18(13): e202300237, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37203862

ABSTRACT

The radical-bearing epoxy monomer could be the ideal embodiment of multifunctionality in epoxy-based materials. This study demonstrates the potential of macroradical epoxies as surface coating materials. A diepoxide monomer derivatized with a stable nitroxide radical is polymerized with a diamine hardener under the influence of a magnetic field. The magnetically oriented and stable radicals in the polymer backbone render the coatings antimicrobial. The unconventional use of magnets during polymerization proved crucial in correlating the structure-property relationships with antimicrobial performance inferred from oscillatory rheological technique, polarized macro-attenuated total reflectance - infrared (macro-ATR-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The magnetic thermal curing influenced the surface morphology, resulting in a synergy of the coating's radical nature with microbiostatic performance assessed using the Kirby-Bauer test and liquid chromatography - mass spectroscopy (LC-MS). Further, the magnetic curing of blends with a traditional epoxy monomer demonstrates that radical alignment is more critical than radical density in imparting biocidal behavior. This study shows how the systematic use of magnets during polymerization could pave for probing more significant insights into the mechanism of antimicrobial action in radical-bearing polymers.

15.
Materials (Basel) ; 16(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36903030

ABSTRACT

Ultra-short 230 fs laser pulses of 515 nm wavelength were tightly focused into 700 nm focal spots and utilised in opening ∼400 nm nano-holes in a Cr etch mask that was tens-of-nm thick. The ablation threshold was found to be 2.3 nJ/pulse, double that of plain silicon. Nano-holes irradiated with pulse energies below this threshold produced nano-disks, while higher energies produced nano-rings. Both these structures were not removed by either Cr or Si etch solutions. Subtle sub-1 nJ pulse energy control was harnessed to pattern large surface areas with controlled nano-alloying of Si and Cr. This work demonstrates vacuum-free large area patterning of nanolayers by alloying them at distinct locations with sub-diffraction resolution. Such metal masks with nano-hole opening can be used for formation of random patterns of nano-needles with sub-100 nm separation when applied to dry etching of Si.

16.
Polymers (Basel) ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904565

ABSTRACT

The power of computational modeling and simulation for establishing clear links between materials' intrinsic properties and their atomic structure has more and more increased the demand for reliable and reproducible protocols. Despite this increased demand, no one approach can provide reliable and reproducible outcomes to predict the properties of novel materials, particularly rapidly cured epoxy-resins with additives. This study introduces the first computational modeling and simulation protocol for crosslinking rapidly cured epoxy resin thermosets based on solvate ionic liquid (SIL). The protocol combines several modeling approaches, including quantum mechanics (QMs) and molecular dynamics (MDs). Furthermore, it insightfully provides a wide range of thermo-mechanical, chemical, and mechano-chemical properties, which agree with experimental data.

17.
Micromachines (Basel) ; 14(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36984957

ABSTRACT

Ultra-short 230 fs laser pulses of a 515 nm wavelength were tightly focused onto 700 nm focal spots and utilised in opening ∼0.4-1 µm holes in alumina Al2O3 etch masks with a 20-50 nm thickness. Such dielectric masks simplify the fabrication of photonic crystal (PhC) light-trapping patterns for the above-Lambertian performance of high-efficiency solar cells. The conditions of the laser ablation of transparent etch masks and the effects sub-surface Si modifications were revealed by plasma etching, numerical modelling, and minority carrier lifetime measurements. Mask-less patterning of Si is proposed using fs laser direct writing for dry plasma etching of Si.

18.
Small ; 19(24): e2207968, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36899492

ABSTRACT

Femtosecond lasers enable flexible and thermal-damage-free ablation of solid materials and are expected to play a critical role in high-precision cutting, drilling, and shaping of electronic chips, display panels, and industrial parts. Although the potential applications are theoretically predicted, true 3D nano-sculpturing of solids such as glasses and crystals, has not yet been demonstrated, owing to the technical challenge of negative cumulative effects of surface changes and debris accumulation on the delivery of laser pulses and subsequent material removal during direct-write ablation. Here, a femtosecond laser-induced cavitation-assisted true 3D nano-sculpturing technique based on the ingenious combination of cavitation dynamics and backside ablation is proposed to achieve stable clear-field point-by-point material removal in real time for precise 3D subtractive fabrication on various difficult-to-process materials. As a result, 3D devices including free-form silica lenses, micro-statue with vivid facial features, and rotatable sapphire micro-mechanical turbine, all with surface roughness less than 10 nm are readily produced. The true 3D processing capability can immediately enable novel structural and functional micro-nano optics and non-silicon micro-electro-mechanical systems based on various hard solids.

19.
Opt Lett ; 48(6): 1379-1382, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36946932

ABSTRACT

With the rapid development of micro-optical applications, there is an increasing demand for micro-optical elements that can be made with minimal processing steps. Current research focuses on practical functionalities of optical performance, lightweight, miniaturization, and easy integration. As an important planar diffractive optical element, the Fresnel zone plate (FZP) provides a compact solution for focusing and imaging. However, the fabrication of FZPs with high quality out of hard and brittle materials remains challenging. Here, we report on the fabrication of diamond FZP by femtosecond laser direct writing. FZPs with the same outer diameter and different focal lengths of 250-1000 µm were made via ablation. The fabricated FZPs possess well-defined geometry and excellent focusing and imaging ability in the visible spectral range. Arrays of FZPs with different focal lengths were made for potential applications in imaging, sensing, and integrated optical systems.

20.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674814

ABSTRACT

The mechano-bactericidal action of nanostructured surfaces is well-documented; however, synthetic nanostructured surfaces have not yet been explored for their antifungal properties toward filamentous fungal species. In this study, we developed a biomimetic nanostructured surface inspired by dragonfly wings. A high-aspect-ratio nanopillar topography was created on silicon (nano-Si) surfaces using inductively coupled plasma reactive ion etching (ICP RIE). To mimic the superhydrophobic nature of insect wings, the nano-Si was further functionalised with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFTS). The viability of Aspergillus brasiliensis spores, in contact with either hydrophobic or hydrophilic nano-Si surfaces, was determined using a combination of standard microbiological assays, confocal laser scanning microscopy (CLSM), and focused ion beam scanning electron microscopy (FIB-SEM). Results indicated the breakdown of the fungal spore membrane upon contact with the hydrophilic nano-Si surfaces. By contrast, hydrophobised nano-Si surfaces prevented the initial attachment of the fungal conidia. Hydrophilic nano-Si surfaces exhibited both antifungal and fungicidal properties toward attached A. brasisiensis spores via a 4-fold reduction of attached spores and approximately 9-fold reduction of viable conidia from initial solution after 24 h compared to their planar Si counterparts. Thus, we reveal, for the first time, the physical rupturing of attaching fungal spores by biomimetic hydrophilic nanostructured surfaces.


Subject(s)
Odonata , Silicon , Animals , Silicon/pharmacology , Silicon/chemistry , Spores, Fungal , Biomimetics/methods , Antifungal Agents , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...