Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Chem ; 93(8): 3987-3996, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33606508

ABSTRACT

Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5-200 kDa or ∼1-3 nm) and larger-scale separation (20-100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.

2.
J Phys Chem Lett ; 6(11): 2134-9, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26266515

ABSTRACT

Ultrastable gold nanomolecule Au144(SCH2CH2Ph)60 upon etching with excess tert-butylbenzenethiol undergoes a core-size conversion and compositional change to form an entirely new core of Au133(SPh-tBu)52. This conversion was studied using high-resolution electrospray mass spectrometry which shows that the core size conversion is initiated after 22 ligand exchanges, suggesting a relatively high stability of the Au144(SCH2CH2Ph)38(SPh-tBu)22 intermediate. The Au144 → Au133 core size conversion is surprisingly different from the Au144 → Au99 core conversion reported in the case of thiophenol, -SPh. Theoretical analysis and ab initio molecular dynamics simulations show that rigid p-tBu groups play a crucial role by reducing the cluster structural freedom, and protecting the cluster from adsorption of exogenous and reactive species, thus rationalizing the kinetic factors that stabilize the Au133 core size. This 144-atom to 133-atom nanomolecule's compositional change is reflected in optical spectroscopy and electrochemistry.

3.
J Am Chem Soc ; 137(14): 4610-3, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25834925

ABSTRACT

Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

4.
J Phys Chem B ; 118(49): 14157-67, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25315687

ABSTRACT

The physicochemical properties of gold:thiolate nanomolecules depend on their crystal structure and the capping ligands. The effects of protecting ligands on the crystal structure of the nanomolecules are of high interest in this area of research. Here we report the crystal structure of an all aromatic thiophenolate-capped Au36(SPh)24 nanomolecule, which has a face-centered cubic (fcc) core similar to other nanomolecules such as Au36(SPh-tBu)24 and Au36(SC5H9)24 with the same number of gold atoms and ligands. The results support the idea that a stable core remains intact even when the capping ligand is varied. We also correct our earlier assignment of "Au36(SPh)23" which was determined based on MALDI mass spectrometry which is more prone to fragmentation than ESI mass spectrometry. We show that ESI mass spectrometry gives the correct assignment of Au36(SPh)24, supporting the X-ray crystal structure. The electronic structure of the title compound was computed at different levels of theory (PBE, LDA, and LB94) using the coordinates extracted from the single crystal X-ray diffraction data. The optical and electrochemical properties were determined from experimental data using UV-vis spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Au36(SPh)24 shows a broad electrochemical gap near 2 V, a desirable optical gap of ∼1.75 eV for dye-sensitized solar cell applications, as well as appropriately positioned electrochemical potentials for many electrocatalytic reactions.

5.
Chem Commun (Camb) ; 50(69): 9895-8, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25026982

ABSTRACT

Au137(SR)56, a nanomolecule with a precise number of metal atoms and ligands, was synthesized. The composition was confirmed by MALDI and ESI mass spectrometry using three unique ligands (-SCH2CH2Ph, -SC6H13, and -SC4H9) and nano-alloys with Ag and Pd. The electrocatalytic properties were tested for CO2 reduction.

6.
Phys Chem Chem Phys ; 16(22): 10473-9, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24733419

ABSTRACT

Gold nanomolecules with a precise number of metal atoms and thiolate ligands are being used for catalysis, biosensing, drug delivery and as alternative energy sources. Highly monodisperse products, with reproducible synthesis and complete characterization, are essential for these purposes. Post synthetic etching is used to synthesize highly stable gold nanomolecules. We report a synthetic protocol for the scalable synthesis of Au130(SR)50 for the first time, by etching of larger clusters via a core conversion process. Au130(SR)50 is not present in the crude product, but, is exclusively formed by etching larger clusters (>40 kDa). This is the first evidence that larger nanocluster cores convert to Au130(SR)50. The special stability of Au130(SR)50 is confirmed by the formation of Au130-x(metal)x(SR)50, where R = CH2CH2Ph, C6H13, C12H25 and metal = Ag, Pd. AuxAg130-x(SR)50 is isolated and characterized with two different Au : Ag precursor ratios. Upon alloying there is a change in the optical features of this 130-metal atom nanomolecule. To understand the process of etching and core conversion, a possible mechanism is being proposed. Highly stable nanomolecules like this can find potential applications in high temperature catalysis and sensing.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Organometallic Compounds/chemical synthesis , Silver/chemistry , Organometallic Compounds/chemistry , Particle Size
7.
Analyst ; 139(8): 1826-9, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24605360

ABSTRACT

Quantized double layer (QDL) charging of a Au130(SR)50 nanomolecule is reported for the first time. In the past, QDL charging was known only for Au144(SR)60 and Au225(SR)75 nanomolecules, which intrigued much research in this field. Here, using differential pulse voltammetry, we demonstrate that Au130 shows QDL charging. Furthermore, 13 different oxidation-reduction waves corresponding to single electron charging events with a clear electrochemical gap of ∼ 450 mV are reported. For Au130(SR)50, both the QDL behaviour and electrochemical gap were observed. Considering the charging energy, the HOMO-LUMO gap of the nanomolecule is 200 mV. Further data analysis was performed to find the capacitance of Au130(SR)50. A comprehensive comparison with other magic sized nanomolecules was made to confirm the molecule-like to bulk metal transition with increasing size of gold nanomolecules. Gold nanomolecules with these electrochemical properties are of great interest in the field of catalysis.

8.
Langmuir ; 30(9): 2490-7, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24571657

ABSTRACT

Gold nanomolecules with a precise number of gold atoms and ligands have promise for catalytic, optical, and biomedical applications. For practical applications, it is essential to develop synthetic protocols to prepare monodisperse gold nanomolecules. A typical synthesis yields a number of nanomolecules with discrete numbers of core atoms. Thermochemical treatment in the presence of excess thiol, etching, is known to narrow down the number of discrete nanomolecules, by selective degradation of sizes with lower stability. Au38(SR)24 and Au40(SR)24 are abundantly formed in these etching reactions due to their extraordinary stability to chemical etching. These nanomolecules are of high interest due in part to its stability, X-ray crystallographic structure availability (Au38), and intrinsic chirality arising from the arrangement of the Au-SR interface. However, the synthetic routes typically yield a mixture of Au38 and Au40, demanding extensive separation protocols. Here, we present a synthetic route to prepare either Au38 or Au40 exclusively in the product of etching. This was made possible by conducting a comprehensive mechanistic study starting from single-sized reactant. Au67 on etching yields Au40 exclusively. Au(103-105)(SR)(45-46) on etching also yields Au40 exclusively. Clusters of various sizes smaller than Au67 on etching yield Au38 exclusively. This is the first direct evidence for the exclusive formation of Au38 and Au40 nanomolecules by core size conversion. Mass spectrometry was used to study the core size conversion reactions to understand the mechanism. Au38 and Au40 nanomolecules form via different intermediates, as observed in the mass spectrometry data.

9.
Nanoscale ; 5(24): 12082-5, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24132473

ABSTRACT

High resolution ESI mass spectrometry of the "22 kDa" nanocluster reveals the presence of a mixture containing Au103(SR)45, Au104(SR)45, Au104(SR)46, and Au105(SR)46 nanoclusters, where R = -CH2CH2Ph. MALDI TOF MS data confirm the purity of the sample and a UV-vis spectrum shows minor features. Au102(SC6H5COOH)44, whose XRD crystal structure was recently reported, is not observed. This is due to ligand effects, because the 102 : 44 composition is produced using aromatic ligands. However, the 103-, 104- and 105-atom nanoclusters, protected by -SCH2CH2Ph and -SC6H13 ligands, are at or near 58 electron shell closing.

10.
Chem Commun (Camb) ; 48(38): 4630-2, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22498833

ABSTRACT

Chiral gold clusters stabilised by enantiopure thiolates were prepared, size-selected and characterised by circular dichroism and mass spectrometry. The product distribution is found to be ligand dependent. Au(25) clusters protected with camphorthiol show clear resemblance of their chiroptical properties with their glutathionate analogue.

11.
J Am Chem Soc ; 133(50): 20258-66, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22107333

ABSTRACT

A systematic study of cross-linking chemistry of the Au(25)(SR)(18) nanomolecule by dithiols of varying chain length, HS-(CH(2))(n)-SH where n = 2, 3, 4, 5, and 6, is presented here. Monothiolated Au(25) has six [RSAuSRAuSR] staple motifs on its surface, and MALDI mass spectrometry data of the ligand exchanged clusters show that propane (C3) and butane (C4) dithiols have ideal chain lengths for interstaple cross-linking and that up to six C3 or C4 dithiols can be facilely exchanged onto the cluster surface. Propanedithiol predominately exchanges with two monothiols at a time, making cross-linking bridges, while butanedithiol can exchange with either one or two monothiols at a time. The extent of cross-linking can be controlled by the Au(25)(SR)(18) to dithiol ratio, the reaction time of ligand exchange, or the addition of a hydrophobic tail to the dithiol. MALDI MS suggests that during ethane (C2) dithiol exchange, two ethanedithiols become connected by a disulfide bond; this result is supported by density functional theory (DFT) prediction of the optimal chain length for the intrastaple coupling. Both optical absorption spectroscopy and DFT computations show that the electronic structure of the Au(25) nanomolecule retains its main features after exchange of up to eight monothiol ligands.


Subject(s)
Gold/chemistry , Metal Nanoparticles , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sulfhydryl Compounds/chemistry , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...