Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Oncol ; 14: 1360678, 2024.
Article in English | MEDLINE | ID: mdl-38496757

ABSTRACT

Background: Germ cell tumors (GCTs) represent the most frequent solid malignancy in young men. This malignancy is highly curable by cisplatin (CDDP)-based chemotherapy. However, there is a proportion of patients having a poor prognosis due to refractory disease or its relapse. No reliable biomarkers being able to timely and accurately stratify poor prognosis GCT patients are currently available. Previously, we have shown that chemotherapy-naïve GCT patients with higher DNA damage levels in peripheral blood mononuclear cells (PBMCs) have significantly worse prognosis compared to patients with lower DNA damage levels. Methods: DNA damage levels in PBMCs of both chemotherapy-naïve and first cycle chemotherapy-treated GCT patients have been assessed by standard alkaline comet assay and its styrene oxide (SO)-modified version. These levels were correlated with clinico-pathological characteristics. Results: We re-confirm prognostic value of DNA damage level in chemotherapy-naïve GCT patients and reveal that this prognosticator is equally effective in GCT patients after first cycle of CDDP-based chemotherapy. Furthermore, we demonstrate that SO-modified comet assay is comparably sensitive as standard alkaline comet assay in case of patients who underwent first cycle of CDDP-based chemotherapy, although it appears more suitable to detect DNA cross-links. Conclusion: We propose that DNA damage levels in PBMCs before and after first cycle of CCDP-based chemotherapy are comparable independent prognosticators for progression-free and overall survivals in GCT patients. Therefore, their clinical use is highly advised to stratify GCT patients to identify those who are most at risk of developing disease recurrence or relapse, allowing tailoring therapeutic interventions to poor prognosis individuals, and optimizing their care management and treatment regimen.

2.
Neoplasma ; 70(4): 485-499, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37789785

ABSTRACT

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase considered a potent tumor suppressor that critically regulates diverse cellular processes, including cell cycle progression, apoptosis, or DNA repair. PP2A is typically downregulated in cancers but mechanisms for its inactivation in human cancers are poorly understood. PP2A represents a family of more than 60 phosphatases. According to cellular context, each heterotrimeric PP2A holoenzyme exerts a unique role in cancer, and PP2A isoforms can act either as tumor suppressors or as promoters. Due to wide structural diversity, PP2A has been considered undruggable. However, increasing knowledge predisposes PP2A diversity to therapeutical targeting for the treatment of a broad range of cancer pathologies, including drug resistance or cloaking immune surveillance. In this review, we discuss the regulatory role of PP2A in cancer, its regulation by microRNA and hypoxia, its contribution to therapy resistance development, and the therapeutic potential of direct and indirect targeting, or combinatory administration with other anti-cancer drugs to improve cancer treatment outcomes.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Protein Processing, Post-Translational
3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36768818

ABSTRACT

Testicular germ cell tumours (TGCTs) are the most common solid malignancy among young men, and their incidence is still increasing. Despite good curability with cisplatin (CDDP)-based chemotherapy, about 10% of TGCTs are non-responsive and show a chemoresistant phenotype. To further increase TGCT curability, better prediction of risk of relapse and early detection of refractory cases is needed. Therefore, to diagnose this malignancy more precisely, stratify patients more accurately and improve decision-making on treatment modality, new biomarkers are still required. Numerous studies showed association of differential expressions of microRNAs (miRNAs) with cancer. Using microarray analysis followed by RT-qPCR validation, we identified specific miRNA expression patterns that discriminate chemoresistant phenotypes in TGCTs. Comparing CDDP-resistant vs. -sensitive TGCT cell lines, we identified miR-218-5p, miR-31-5p, miR-125b-5p, miR-27b-3p, miR-199a-5p, miR-214-3p, let-7a and miR-517a-3p as significantly up-regulated and miR-374b-5p, miR-378a-3p, miR-20b-5p and miR-30e-3p as significantly down-regulated. In patient tumour samples, we observed the highest median values of relative expression of miR-218-5p, miR-31-5p, miR-375-5p and miR-517a-3p, but also miR-20b-5p and miR-378a-3p, in metastatic tumour samples when compared with primary tumour or control samples. In TGCT patient plasma samples, we detected increased expression of miR-218-5p, miR-31-5p, miR-517a-3p and miR-375-5p when compared to healthy individuals. We propose that miR-218-5p, miR-31-5p, miR-375-5p, miR-517-3p, miR-20b-5p and miR-378a-3p represent a new panel of biomarkers for better prediction of chemoresistance and more aggressive phenotypes potentially underlying metastatic spread in non-seminomatous TGCTs. In addition, we provide predictions of the targets and functional and regulatory networks of selected miRNAs.


Subject(s)
MicroRNAs , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Humans , Male , Cisplatin/pharmacology , Cisplatin/therapeutic use , Early Detection of Cancer , MicroRNAs/metabolism , Testicular Neoplasms/drug therapy , Testicular Neoplasms/genetics , Biomarkers , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/genetics , Microarray Analysis , Data Analysis , Gene Expression Profiling , Biomarkers, Tumor/genetics
4.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499000

ABSTRACT

Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.


Subject(s)
DNA Repair , Neoplasm Recurrence, Local , Male , Humans , Neoplasm Recurrence, Local/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , DNA Damage , Genomic Instability
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293346

ABSTRACT

Cisplatin (CDDP)-based chemotherapy is the standard of care in patients with muscle-invasive bladder cancer. However, in a large number of cases, the disease becomes resistant or does not respond to CDDP, and thus progresses and disseminates. In such cases, prognosis of patients is very poor. CDDP manifests its cytotoxic effects mainly through DNA damage induction. Hence, response to CDDP is mainly dependent on DNA damage repair and tolerance mechanisms. Herein, we have examined CDDP response in a panel of the urothelial carcinoma cell (UCC) lines. We characterized these cell lines with regard to viability after CDDP treatment, as well as kinetics of induction and repair of CDDP-induced DNA damage. We demonstrate that repair of CDDP-induced DNA lesions correlates, at least to some extent, with CDDP sensitivity. Furthermore, we monitored expression of the key genes involved in selected DNA repair and tolerance mechanisms, nucleotide excision repair, homologous recombination and translesion DNA synthesis, and show that it differs in the UCC lines and positively correlates with CDDP resistance. Our data indicate that CDDP response in the UCC lines is dependent on DNA damage repair and tolerance factors, which may, therefore, represent valuable therapeutic targets in this malignancy.


Subject(s)
Antineoplastic Agents , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , DNA Repair , Antineoplastic Agents/pharmacology , Cell Line , DNA
6.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887244

ABSTRACT

Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.


Subject(s)
Epigenesis, Genetic , Neoplasms , Cell Transformation, Neoplastic/genetics , DNA, Mitochondrial/metabolism , Energy Metabolism/genetics , Humans , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Microenvironment
7.
Cancers (Basel) ; 13(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34771736

ABSTRACT

Rete testis invasion (RTI) is an unfavourable prognostic factor for the risk of relapse in clinical stage I (CS I) seminoma patients. Notably, no evidence of difference in the proteome of RTI-positive vs. -negative CS I seminomas has been reported yet. Here, a quantitative proteomic approach was used to investigate RTI-associated proteins. 64 proteins were differentially expressed in RTI-positive compared to -negative CS I seminomas. Of them, 14-3-3γ, ezrin, filamin A, Parkinsonism-associated deglycase 7 (PARK7), vimentin and vinculin, were validated in CS I seminoma patient cohort. As shown by multivariate analysis controlling for clinical confounders, PARK7 and filamin A expression lowered the risk of RTI, while 14-3-3γ expression increased it. Therefore, we suggest that in real clinical biopsy specimens, the expression level of these proteins may reflect prognosis in CS I seminoma patients.

8.
Environ Geochem Health ; 43(7): 2665-2677, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32700094

ABSTRACT

This epidemiological study of ecological type deals with the analysis of relationship between drinking water hardness and health status of inhabitants of the Slovak Republic. This relationship was investigated in two groups of more than 50,000 inhabitants living in 53 different municipalities. The first group was supplied with drinking water with low hardness, and the second group was supplied with drinking water with increased hardness. The health status of the population of both groups was monitored by means of health indicators, which represented 15-year average values, for 1994-2008. We investigated four major causes of death, namely cardiovascular, oncological, gastrointestinal and respiratory tract mortality, and evaluated the average life expectancy. The health status of inhabitants supplied with drinking water with increased hardness was significantly better than the health status of people supplied with drinking water with low hardness. For example, the relative mortality for cardiovascular diseases, oncological diseases, digestive tract diseases and respiratory diseases was 56%, 62%, 128% and 121% higher in the population supplied with soft drinking water compared to the population supplied with hard water, respectively. In addition, life expectancy was more than 4.5 years higher in the population supplied with hard drinking water. Our observation confirms the findings of previous studies on relationship between the water hardness and human health.


Subject(s)
Drinking Water/analysis , Health Status , Water Pollutants, Chemical/analysis , Water Supply/standards , Cities , Female , Hardness , Humans , Male , Slovakia/epidemiology
9.
Article in English | MEDLINE | ID: mdl-32824039

ABSTRACT

The US EPA health risk assessment method is currently widely used to assess human health risks for many environmental constituents. It is used for risk assessment from the exposure to various contaminants exceeding tolerable or safe reference doses, determined e.g., for drinking water, soil, air and food. It accepts widely that excess contents of non-essential elements (e.g., As, Pb or Sb) in environmental compartments represent a general risk to human health. However, contrary to toxic trace elements, deficient contents of essential (biogenic) elements e.g., F, I, Se, Zn, Fe, Ca or Mg may represent even higher health risk. Therefore, we propose to extend the human health risk assessment by calculating the health risk for deficient content and intake of essential elements, and to introduce the terms Average Daily Missing Dose (ADMD), Average Daily Required Dose (ADRD) and Average Daily Accepted Dose (ADAD). We propose the following equation to calculate the Hazard Quotient (HQ) of health risk from deficient elements: HQd = ADRD/ADAD. At present, there are no reference concentrations or doses of essential elements in each environmental compartment in world databases (Integrated Risk Information System IRIS, The Risk Assessment Information System RAIS). ADRD and ADMD can be derived from different regulatory standards or guidelines (if they exist) or calculated from actual regional data on the state of population health and content of essential elements in the environment, e.g., in groundwater or soil. This methodology was elaborated and tested on inhabitants of the Slovak Republic supplied with soft drinking water with an average Mg content of 5.66 mg·L-1. The calculated ADMD of Mg for these inhabitants is 0.314 mg·kg-1·day-1 and HQd is equal to 2.94, indicating medium risk of chronic diseases. This method extending traditional health risk assessment is the first attempt to quantify deficient content of essential elements in drinking water. It still has some limitations but also has potential to be further developed and refined through its testing in other countries.


Subject(s)
Drinking Water , Environmental Monitoring , Groundwater , Water Pollutants, Chemical/analysis , Humans , Risk Assessment , Slovakia , Trace Elements/analysis , Water Pollutants, Chemical/toxicity
10.
Article in English | MEDLINE | ID: mdl-32660824

ABSTRACT

Germ cell tumour (GCT) patients who fail to respond to chemotherapy or who relapse have a poor prognosis. Timely and accurately stratifying such patients could optimise their therapy. We identified endogenous DNA damage levels as a prognostic marker for progression-free (PFS) and overall (OS) survival in chemotherapy-naïve GCT patients. In the present study, we have extended our previous results and reviewed the prognostic power of DNA damage level in GCTs. Endogenous DNA damage levels were measured with the comet assay. Receiver operator characteristic analysis was applied to determine the optimal cut-off value and to evaluate its prognostic accuracy. PFS and OS were estimated by the Kaplan-Meier method and compared using the log-rank test. Hazard ratio (HR) estimates were calculated by Cox regression analysis. A cut-off value of 6.34 provided the highest sensitivity and specificity, with area under curve values of 0.813 and 0.814 for disease progression and mortality, respectively. A % DNA in tail > 6.34 was significantly associated with shorter PFS (HR = 9.54, 95 % confidence interval [CI]: 3.43-26.55, p < 0.001) and OS (HR = 14.62, 95 % CI: 3.14-67.95, p = 0.001) by univariate analysis. The prognostic value of DNA damage measurement was confirmed by multivariate models (HR = 6.45, 95 % CI: 2.22-18.75, p = 0.001 for PFS and HR = 9.40, 95 % CI: 1.70-52.09, p = 0.010 for OS), when HR was adjusted for relevant clinical categories. The added prognostic value of DNA damage in combination with International Germ Cell Cancer Collaborative Group (IGCCCG) risk groups has been revealed. Endogenous DNA damage is an independent prognosticator for PFS and OS in GCT patients and its clinical use, particularly in combination with IGCCCG risk groups, may help in stratifying these patients.


Subject(s)
Blood Cells/pathology , DNA Damage/genetics , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , Adult , Cells, Cultured , Comet Assay/methods , Disease Progression , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Prognosis , Progression-Free Survival , Proportional Hazards Models , Risk Factors
11.
Int J Mol Sci ; 21(12)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560271

ABSTRACT

Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. The expression of CAIX in breast cancer patients is associated with poor prognosis and metastases. Importantly, CAIX-positive hypoxic tumor regions are enriched in cancer stem cells (CSCs). Here we investigated the biological effects of CA9-silencing in breast cancer cell lines. We found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members. Simultaneously with the increase of let-7 miRNAs in CAIX-suppressed cells, LIN28 protein levels decreased, along with downstream metabolic pathways: pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylation of its substrate, pyruvate dehydrogenase (PDH) at Ser-232, causing attenuation of glycolysis. In addition to perturbed glycolysis, CAIX-knockouts, in correlation with decreased LIN28 (as CSC reprogramming factor), also exhibit reduction of the further CSC-associated markers NANOG (Homeobox protein NANOG) and ALDH1 (Aldehyde dehydrogenase isoform 1). Oppositely, overexpression of CAIX leads to the enhancement of LIN28, ALDH1, and NANOG. In conclusion, CAIX-driven regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAIX-mediated adaptation to hypoxia and acidosis in carcinogenesis.


Subject(s)
Antigens, Neoplasm/genetics , Breast Neoplasms/metabolism , Carbonic Anhydrase IX/genetics , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , RNA-Binding Proteins/genetics , Breast Neoplasms/genetics , Cell Hypoxia , Cell Line, Tumor , Cellular Reprogramming , Female , Gene Expression Profiling , Glycolysis , Humans , Hydrogen-Ion Concentration , MCF-7 Cells
12.
BMC Cancer ; 20(1): 17, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31906898

ABSTRACT

BACKGROUND: Germ cell tumours (GCTs) represent a highly curable malignity as they respond well to cisplatin (CDDP)-based chemotherapy. Nevertheless, a small proportion of GCT patients relapse or do not respond to therapy. As this might be caused by an increased capacity to repair CDDP-induced DNA damage, identification of DNA repair biomarkers predicting inadequate or aberrant response to CDDP, and thus poor prognosis for GCT patients, poses a challenge. The objective of this study is to examine the expression levels of the key nucleotide excision repair (NER) factors, XPA, ERCC1 and XPF, in GCT patients and cell lines. METHODS: Two hundred seven GCT patients' specimens with sufficient follow-up clinical-pathological data and pairwise combinations of CDDP-resistant and -sensitive GCT cell lines were included. Immunohistochemistry was used to detect the ERCC1, XPF and XPA protein expression levels in GCT patients' specimen and Western blot and qRT-PCR examined the protein and mRNA expression levels in GCT cell lines. RESULTS: GCT patients with low XPA expression had significantly better overall survival than patients with high expression (hazard ratio = 0.38, 95% confidence interval: 0.12-1.23, p = 0.0228). In addition, XPA expression was increased in the non-seminomatous histological subtype, IGCCCG poor prognosis group, increasing S stage, as well as the presence of lung, liver and non-pulmonary visceral metastases. Importantly, a correlation between inadequate or aberrant CDDP response and XPA expression found in GCT patients was also seen in GCT cell lines. CONCLUSIONS: XPA expression is an additional independent prognostic biomarker for stratifying GCT patients, allowing for improvements in decision-making on treatment for those at high risk of refractoriness or relapse. In addition, it could represent a novel therapeutic target in GCTs.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , DNA Repair/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Testicular Neoplasms/metabolism , Xeroderma Pigmentosum Group A Protein/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , DNA Damage/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Endonucleases/genetics , Endonucleases/metabolism , Humans , Immunohistochemistry , Male , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , Phosphorylation , Prognosis , Testicular Neoplasms/drug therapy , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Xeroderma Pigmentosum Group A Protein/genetics
13.
Oncotarget ; 11(51): 4735-4753, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33473258

ABSTRACT

Testicular germ cell tumors (TGCTs) represent a well curable malignity due to their exceptional response to cisplatin (CDDP). Despite remarkable treatment results, approximately 5% of TGCT patients develop CDDP resistance and die. Exceptional curability makes TGCTs a highly valuable model system for studying the molecular mechanisms of CDDP sensitivity. Our study was aimed at revealing difference in gene expression between the CDDP-resistant and -sensitive TGCT cell lines, and hence at identifying candidate genes that could serve as potential biomarkers of CDDP response. Using gene expression array, we identified 281 genes that are differentially expressed in CDDP-resistant compared to -sensitive TGCT cell lines. The expression of 25 genes with the highest fold change was validated by RT-qPCR. Of them, DNMT3L, GAL, IGFBP2, IGFBP7, L1TD1, NANOG, NTF3, POU5F1, SOX2, WNT6, ZFP42, ID2, PCP4, SLC40A1 and TRIB3, displayed comparable expression change in gene expression array and RT-qPCR, when all CDDP-resistant TGCT cell lines were pairwise combined with all -sensitive ones. Products of the identified genes are pluripotency factors, or are involved in processes, such as cell metabolism, proliferation or migration. We propose that, after clinical validation, these genes could serve as prognostic biomarkers for early detection of CDDP response in TGCT patients.

14.
Drug Resist Updat ; 46: 100645, 2019 09.
Article in English | MEDLINE | ID: mdl-31585396

ABSTRACT

Curative cancer therapy remains a major challenge particularly in cancers displaying multidrug resistance (MDR). The MDR phenotype is characterized by cross-resistance to a wide array of anticancer drugs harboring distinct structures and mechanisms of action. The multiple factors involved in mediating MDR may include host factors, tumor factors as well as tumor-host interactions. Among the host factors are genetic variants and drug-drug interactions. The plethora of tumor factors involves decreased drug uptake primarily via impaired influx transporters, increased drug efflux predominantly due to the overexpression of MDR efflux transporters of the ATP-binding cassette superfamily or due to drug efflux mediated by extracellular vesicles (EVs) or drug-loaded lysosomes undergoing exocytosis, deregulation of cell death mechanisms (i.e. anti-apoptotic modalities), enhanced DNA damage repair, epigenetic alterations and/or deregulation of microRNAs. The intratumor heterogeneity and dynamics, along with cancer stem cell plasticity, are important tumor factors. Among the tumor-host interactions are the role of the tumor microenvironment, selective pressure of various stressor conditions and agents, acidic pH and the intracellular transfer of traits mediated by EVs. The involvement of these diverse factors in MDR, highlights the need for precision medicine and real-time personalized treatments of individual cancer patients. In this review, written by a group of researchers from COST Action STRATAGEM "New diagnostic and therapeutic tools against multidrug resistant tumors", we aim to bring together these multidisciplinary and interdisciplinary features of MDR cancers. Importantly, it is becoming increasingly clear that deciphering the molecular mechanisms underlying anticancer drug resistance, will pave the way towards the development of novel precision medicine treatment modalities that are able to surmount distinct and well-defined mechanisms of anticancer drug resistance.


Subject(s)
Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Biological Transport/drug effects , Biological Transport/genetics , Drug Interactions/genetics , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
15.
Oncotarget ; 8(44): 77369-77384, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100393

ABSTRACT

Deregulated expression of microRNAs has the oncogenic or tumor suppressor function in cancer. Since miRNAs in plasma are highly stable, their quantification could contribute to more precise cancer diagnosis, prognosis and therapy prediction. We have quantified expression of seven oncomiRs, namely miR-17/92 cluster (miR-17, miR-18a, miR-19a and miR-20a), miR-21, miR-27a and miR-155, in plasma of 137 breast cancer (BC) patients. We detected down-regulation of six miRNAs in patients with invasive BC compared to controls; however, only miR-20a and miR-27a down-regulations were statistically significant. Comparing miRNA expression between early and advanced stages of BC, we observed statistically significant decrease of miR-17 and miR-19a. We identified down-regulation of miR-17 and miR-20a in patients with clinical parameters of advanced BC (lymph node metastasis, tumor grade 3, circulating tumor cells, higher Ki-67-related proliferation, hormone receptor negativity and HER2 amplification), when compared to controls. Moreover, decreased level of miR-17 was found from low to high grade. Therefore, miR-17 could represent an indicator of advanced BC. Down-regulated miR-27a expression levels were observed in all clinical categories regardless of tumor progression. Hence, miR-27a could be used as a potential diagnostic marker for BC. Our data indicates that any changes in miRNA expression levels in BC patients in comparison to controls could be highly useful for cancer-associated pathology discrimination. Moreover, dynamics of miRNA expression changes could be used for BC progression monitoring.

16.
Eur J Neurosci ; 46(6): 2161-2176, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28833693

ABSTRACT

Traumatic injury of the central nervous system is accompanied by various functional and morphological changes. Animal models of traumatic brain injury are commonly used to investigate changes in behaviour, morphology, in the expression of various proteins around the site of the injury, or the expression of diagnostically important biomarkers. Excitability of a single neuron at, or close to, the site of injury was rarely investigated. Several in vitro models were developed which allow such investigation. In the present work, we employed a fibrotic scar model according to Kimura-Kuroda and coauthors to analyse altered excitability of rat hippocampal neurons under the conditions mimicking traumatic brain injury. Hippocampal neurons from newborn rats were cultured either on a fibrotic scar model or in the presence of TGF-ß1, a cytokine secreted at a brain injury site that may have both neuroprotective and neurodegenerative function. Fibrotic scar facilitated ability of neonatal hippocampal neurons to fire action potential series by increasing the density of voltage activated sodium and potassium currents. Chondroitin sulphate proteoglycans played substantial role in these effects, as proven by their full reversion after administration of Chondroitinase ABC. In contrast, TGF-ß1 did not contribute to them. An application of TGF-ß1 itself attenuated generation of action potentials, inhibited sodium current and potentiated potassium currents. Main alteration of electrophysiological parameters of neonatal hippocampal neurons caused by a fibrotic scar model is enhanced excitability. TGF-ß1 may have predominantly neuroprotective role in injured rat hippocampus.


Subject(s)
Action Potentials , Hippocampus/pathology , Neurons/physiology , Transforming Growth Factor beta/metabolism , Animals , Cells, Cultured , Chondroitin Sulfates/metabolism , Female , Fibrosis , Hippocampus/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Potassium Channels/metabolism , Rats , Rats, Wistar , Sodium Channels/metabolism , Transforming Growth Factor beta/pharmacology
17.
Cell Mol Neurobiol ; 37(5): 771-782, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27517720

ABSTRACT

Acute injury of central nervous system (CNS) starts a cascade of morphological, molecular, and functional changes including formation of a fibrotic scar, expression of transforming growth factor beta 1 (TGF-ß1), and expression of extracellular matrix proteins leading to arrested neurite outgrowth and failed regeneration. We assessed alteration of electrophysiological properties of cerebellar granule cells (CGCs) in two in vitro models of neuronal injury: (i) model of fibrotic scar created from coculture of meningeal fibroblasts and cerebral astrocytes with addition of TGF-ß1; (ii) a simplified model based on administration of TGF-ß1 to CGCs culture. Both models reproduced suppression of neurite outgrowth caused by neuronal injury, which was equally restored by chondroitinase ABC (ChABC), a key disruptor of fibrotic scar formation. Voltage-dependent calcium current was not affected in either injury model. However, intracellular calcium concentration could be altered as an expression of inositol trisphosphate receptor type 1 was suppressed by TGF-ß1 and restored by ChABC. Voltage-dependent sodium current was significantly suppressed in CGCs cultured on a model of fibrotic scar and was only partly restored by ChABC. Administration of TGF-ß1 significantly shifted current-voltage relation of sodium current toward more positive membrane potential without change to maximal current amplitude. Both transient and sustained potassium currents were significantly suppressed on a fibrotic scar and restored by ChABC to their control amplitudes. In contrast, TGF-ß1 itself significantly upregulated transient and did not change sustained potassium current. Observed changes of voltage-dependent ion currents may contribute to known morphological and functional changes in injured CNS.


Subject(s)
Calcium Channels/metabolism , Cerebellum/pathology , Ion Channel Gating , Neurons/metabolism , Neurons/pathology , Potassium Channels/metabolism , Sodium Channels/metabolism , Animals , Fibrosis , Gene Expression Regulation/drug effects , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ion Channel Gating/drug effects , Models, Biological , Neurites/drug effects , Neurites/metabolism , Neurons/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Transforming Growth Factor beta1/pharmacology
18.
Oncotarget ; 7(46): 75996-76005, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27732956

ABSTRACT

Germ cell tumors (GCTs) are extraordinarily sensitive to cisplatin (CDDP)-based chemotherapy. DNA damage represents one of the most important factors contributing to toxic effects of CDDP-based chemotherapy. This study was aimed to evaluate the prognostic value of DNA damage level in peripheral blood lymphocytes (PBLs) from chemo-naïve GCT patients. PBLs isolated from 59 chemotherapy-naïve GCT patients were included into this prospective study. DNA damage levels in PBLs were evaluated by the Comet assay and scored as percentage tail DNA by the Metafer-MetaCyte analyzing software. The mean ± SEM (standard error of the mean) of endogenous DNA damage level was 5.25 ± 0.64. Patients with DNA damage levels lower than mean had significantly better progression free survival (hazard ratio [HR] = 0.19, 95% CI (0.04 - 0.96), P = 0.01) and overall survival (HR = 0.00, 95% CI (0.00 - 0.0), P < 0.001) compared to patients with DNA damage levels higher than mean. Moreover, there was significant correlation between the DNA damage level and presence of mediastinal lymph nodes metastases, IGCCCG (International Germ Cell Cancer Collaborative Group) risk group, and serum tumor markers level. These data suggest that DNA damage levels in PBLs of GCT patients may serve as an important prognostic marker early identifying patients with poor outcome.


Subject(s)
DNA Damage , Lymphocytes/metabolism , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/mortality , Adolescent , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Comet Assay , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/pathology , Prognosis , Risk Factors , Young Adult
19.
Neuroreport ; 25(5): 340-6, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24535220

ABSTRACT

Acute injury to central nervous system (CNS) triggers neurodegenerative processes that can result in serious damage or complete loss of function. After injury, production of transforming growth factor ß1 (TGFß1) increases and initiates creation of a fibrotic scar that prevents normal growth, plasticity, and recovery of damaged neurons. Administration of TGFß1 antagonists can prevent its pathological effects. To define consequences of increased TGFß1 release on calcium signaling, neuronal plasticity, excitability, and mitochondrial dynamics in CNS neurons we directly exposed a rat primary culture of cerebellar granule neurons to TGFß1. We focused on changes in expression of intracellular calcium transporters, especially inositol-1,4,5-trisphosphate receptor (IP3R) type 1, mitochondrial dynamics, and membrane excitability. TGFß1 significantly decreased the gene and protein expression of inositol-1,4,5-trisphosphate receptor type 1 and the gene expression of additional intracellular Ca transporters such as IP3R2, ryanodine receptor type 1 (RyR1), RyR2, and SERCA2. Altered calcium signaling suppressed neurite outgrowth and significantly decreased the length of the mitochondria and the frequency of mitochondrial fusion. The resting membrane potential of cerebellar granule neurons was hyperpolarized and slow after depolarization of single action potential was suppressed. LY364947, a blocker of TGFß1 receptor I, prevented these effects, and IP3 receptor blocker 2-aminoethoxydiphenyl borate (2APB) mimicked them. After CNS injury TGFß1 downregulates intracellular Ca levels and alters Ca signaling within injured neurons. We suggest that in our model TGFß1 may trigger both neurodegenerative and neuroprotective events through IP3-induced Ca signaling.


Subject(s)
Cerebellum/physiology , Mitochondria/physiology , Neurites/physiology , Neurons/physiology , Transforming Growth Factor beta1/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Boron Compounds/pharmacology , Calcium/metabolism , Cell Enlargement , Cells, Cultured , Central Nervous System Agents/pharmacology , Cerebellum/drug effects , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mitochondrial Dynamics/physiology , Neurites/drug effects , Neurons/drug effects , Pyrazoles/pharmacology , Pyrroles/pharmacology , Rats , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
20.
Gen Physiol Biophys ; 31(4): 375-82, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23255663

ABSTRACT

Neurodegeneration comprises assembly of pathophysiological events that gives rise to a progressive loss of neuronal structure and function including cellular damage, diseases development or cellular death. Neurons respond by adjusting signaling pathways, from gene expression to morphological changes. In most of these processes, Ca2+ signaling plays a pivotal role. By increasing the Ca2+ concentration, the cell responds to neuronal, neurotrophic and other growth factor stimuli, however, the molecular mechanism of Ca2+-dependent neurite outgrowth and development yet requires further elucidation. Here we focus on the role of Ca2+ and selected Ca2+ transporters involved in processes of CNS neurodegeneration - inositol 1,4,5-trisphosphate (IP3Rs) and ryanodine receptors (RyRs), considering the fact that these receptors may be important "sensors" of disturbed intracellular calcium homeostasis. We propose that in vitro cellular models could serve as suitable experimental systems for the determination of the role that these receptors play in neuropathological conditions. Recognition of the principles, key players and regulatory processes may elucidate the role of Ca2+ in the regulation of neuronal proliferation, development and differentiation, growth and axon navigation in neurodegenerative and regenerative processes. This may provide a new insight and also discovery of novel therapeutic-targeting possibilities for severe neurological disorders and pathophysiological changes.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Animals , Humans , Ion Channel Gating
SELECTION OF CITATIONS
SEARCH DETAIL
...