Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Biomolecules ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927120

ABSTRACT

Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.


Subject(s)
Receptors, Calcitriol , Vitamin D3 24-Hydroxylase , Vitamin D , Animals , Vitamin D/metabolism , Humans , Vitamin D3 24-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/genetics , Mice , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Intestinal Mucosa/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Intestines/enzymology , Calcitriol/metabolism
2.
Cells ; 12(21)2023 11 04.
Article in English | MEDLINE | ID: mdl-37947652

ABSTRACT

Bexarotene, a drug approved for treatment of cutaneous T-cell lymphoma (CTCL), is classified as a rexinoid by its ability to act as a retinoid X receptor (RXR) agonist with high specificity. Rexinoids are capable of inducing RXR homodimerization leading to the induction of apoptosis and inhibition of proliferation in human cancers. Numerous studies have shown that bexarotene is effective in reducing viability and proliferation in CTCL cell lines. However, many treated patients present with cutaneous toxicity, hypothyroidism, and hyperlipidemia due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. In this study, 10 novel analogs and three standard compounds were evaluated side-by-side with bexarotene for their ability to drive RXR homodimerization and subsequent binding to the RXR response element (RXRE). In addition, these analogs were assessed for proliferation inhibition of CTCL cells, cytotoxicity, and mutagenicity. Furthermore, the most effective analogs were analyzed via qPCR to determine efficacy in modulating expression of two critical tumor suppressor genes, ATF3 and EGR3. Our results suggest that these new compounds may possess similar or enhanced therapeutic potential since they display enhanced RXR activation with equivalent or greater reduction in CTCL cell proliferation, as well as the ability to induce ATF3 and EGR3. This work broadens our understanding of RXR-ligand relationships and permits development of possibly more efficacious pharmaceutical drugs. Modifications of RXR agonists can yield agents with enhanced biological selectivity and potency when compared to the parent compound, potentially leading to improved patient outcomes.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Bexarotene/pharmacology , Bexarotene/therapeutic use , Tetrahydronaphthalenes/pharmacology , Tetrahydronaphthalenes/therapeutic use , Lymphoma, T-Cell, Cutaneous/metabolism , Retinoid X Receptors/metabolism , Skin Neoplasms/drug therapy
3.
Food Funct ; 14(23): 10314-10328, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37916395

ABSTRACT

There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Lacticaseibacillus rhamnosus , Probiotics , Mice , Animals , CD8-Positive T-Lymphocytes , Cell Death , Immunotherapy , Colorectal Neoplasms/drug therapy
4.
Vitam Horm ; 123: 313-383, 2023.
Article in English | MEDLINE | ID: mdl-37717990

ABSTRACT

The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.


Subject(s)
Calcium , Receptors, Calcitriol , Humans , Ligands , Parathyroid Hormone , Receptors, Calcitriol/genetics
5.
Cancers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37444542

ABSTRACT

Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.

6.
Cancer Epidemiol Biomarkers Prev ; 32(8): 1061-1068, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37257199

ABSTRACT

BACKGROUND: Observational studies show high prediagnosis 25-hydroxyvitamin D is associated with lower mortality after colorectal cancer diagnosis. Results from clinical trials suggest vitamin D supplementation may improve outcomes among patients with colorectal cancer. Most studies included few Black Americans, who typically have lower 25-hydroxyvitamin D. We evaluated associations between serum 25-hydroxyvitamin D and mortality after colorectal cancer diagnosis among Black American cases. METHODS: Data arose from 218 Black Americans from the Southern Community Cohort Study diagnosed with colorectal cancer during follow-up (age 40-79 at enrollment). Prediagnostic 25-hydroxyvitamin D was measured at enrollment and categorized as deficient (<12 ng/mL), insufficient (12-19.9 ng/mL), or sufficient (≥20 ng/mL). Mortality was determined from the National Death Index. Cox proportional hazards were used to estimate HRs and 95% confidence intervals (CI) for associations between 25-hydroxyvitamin D and mortality. RESULTS: As a continuous exposure, higher 25-hydroxyvitamin D was associated with overall mortality [HR = 0.79 (0.65-0.96) per-SD increase, Ptrend = 0.02] and colorectal cancer-specific mortality [HR = 0.83 (0.64-1.08), Ptrend = 0.16]. For overall mortality, associations were strongest among females [HR = 0.65 (0.42-0.92)], current smokers [HR = 0.61 (0.38-0.98)], and obese participants [HR = 0.47 (0.29-0.77)]. Compared with those with deficiency, participants with sufficient 25-hydroxyvitamin D had lower overall mortality after multivariable adjustment [HR: 0.61 (0.37-1.01)]. CONCLUSIONS: Prediagnosis 25-hydroxyvitamin D is inversely associated with overall and colorectal cancer-specific mortality among Black Americans with colorectal cancer. Correcting vitamin D deficiency may improve survival of these patients, particularly for obese individuals and smokers. IMPACT: Our results support including more Black Americans in trials of vitamin D supplementations to improve colorectal cancer outcomes.


Subject(s)
Colorectal Neoplasms , Vitamin D Deficiency , Adult , Aged , Female , Humans , Middle Aged , Black or African American , Cohort Studies , Obesity , Vitamin D , Male
7.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555852

ABSTRACT

Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.


Subject(s)
Leukemia , Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Bexarotene/pharmacology , Retinoid X Receptors/metabolism , Tetrahydronaphthalenes/pharmacology , Liver X Receptors , Retinoids/pharmacology , Triglycerides
8.
PLoS One ; 17(10): e0275683, 2022.
Article in English | MEDLINE | ID: mdl-36264926

ABSTRACT

Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders and affects approximately 4% of the global population. The diagnosis of IBS can be made based on symptoms using the validated Rome criteria and ruling out commonly occurring organic diseases. Although biomarkers exist for "IBS mimickers" such as celiac disease and inflammatory bowel disease (IBD), no such test exists for IBS. DNA microarrays of colonic tissue have been used to identify disease-associated variants in other gastrointestinal (GI) disorders. In this study, our objective was to identify biomarkers and unique gene expression patterns that may define the pathological state of IBS. Mucosal tissue samples were collected from the sigmoid colon of 29 participants (11 IBS and 18 healthy controls). DNA microarray analysis was used to assess gene expression profiling. Extraction and purification of RNA were then performed and used to synthesize cDNA. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was employed to identify differentially expressed genes in patients diagnosed with IBS compared to healthy, non-IBS patient-derived cDNA. Additional testing probed vitamin D-mediated regulation of select genes associated with serotonergic metabolism. DNA microarray analyses led to the identification of 858 differentially expressed genes that may characterize the IBS pathological state. After screening a series of genes using a combination of gene ontological analysis and RT-qPCR, this spectrum of potential IBS biomarkers was narrowed to 23 genes, some of which are regulated by vitamin D. Seven putative IBS biomarkers, including genes involved in serotonin metabolism, were identified. This work further supports the hypothesis that IBS pathophysiology is evident within the human transcriptome and that vitamin D modulates differential expression of genes in IBS patients. This suggests that IBS pathophysiology may also involve vitamin D deficiency and/or an irregularity in serotonin metabolism.


Subject(s)
Irritable Bowel Syndrome , Humans , Biomarkers/metabolism , Diarrhea/pathology , DNA, Complementary/metabolism , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/diagnosis , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/complications , RNA/metabolism , RNA-Directed DNA Polymerase/metabolism , Serotonin/genetics , Serotonin/metabolism , Transcriptome , Tryptophan Hydroxylase/genetics , Vitamin D/metabolism , Vitamins/metabolism
9.
J Med Chem ; 65(8): 6039-6055, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35404047

ABSTRACT

Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize.


Subject(s)
Neuroblastoma , Receptors, Calcitriol , Animals , Animals, Genetically Modified , Heterografts , Humans , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/metabolism , Vitamins
10.
Front Immunol ; 13: 746484, 2022.
Article in English | MEDLINE | ID: mdl-35154092

ABSTRACT

Altering T cell trafficking to mucosal regions can enhance immune responses towards pathogenic infections and cancers at these sites, leading to better outcomes. All-trans-retinoic acid (ATRA) promotes T cell migration to mucosal surfaces by inducing transcription of the mucosal-homing receptors CCR9 and α4ß7 via binding to retinoic acid receptors (RARs), which heterodimerize with retinoid X receptors (RXRs) to function. However, the unstable nature and toxicity of ATRA limit its use as a widespread treatment modality for mucosal diseases. Therefore, identifying alternatives that could reduce or eliminate the use of ATRA are needed. Rexinoids are synthetically derived compounds structurally similar to ATRA. Originally named for their ability to bind RXRs, rexinoids can enhance RAR-mediated gene transcription. Furthermore, rexinoids are more stable than ATRA and possess an improved safety profile, making them attractive candidates for use in clinical settings. Here we show that select novel rexinoids act as ATRA mimics, as they cause increased CCR9 and α4ß7 expression and enhanced migration to the CCR9 ligand, CCL25 in vitro, even in the absence of ATRA. Conversely, other rexinoids act synergistically with ATRA, as culturing cells with suboptimal doses of both compounds resulted in CCR9 expression and migration to CCL25. Overall, our findings show that rexinoids can be used independently or synergistically with ATRA to promote mucosal homing of T cells in vitro, and lends support for the prospective clinical use of these compounds in immunotherapeutic approaches for pathogenic infections or cancers at mucosal surfaces.


Subject(s)
Cell Movement/drug effects , Integrins/genetics , Receptors, CCR/genetics , T-Lymphocytes/drug effects , Tretinoin/pharmacology , Animals , Female , Integrins/immunology , Mice , Mice, Inbred BALB C , Mucous Membrane/metabolism , Receptors, CCR/immunology , T-Lymphocytes/immunology
11.
Sci Rep ; 12(1): 293, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997154

ABSTRACT

Rexinoids are ligands which activate retinoid X receptors (RXRs), regulating transcription of genes involved in cancer-relevant processes. Rexinoids have anti-neoplastic activity in multiple preclinical studies. Bexarotene, used to treat cutaneous T cell lymphoma, is the only FDA-approved rexinoid. Bexarotene has also been evaluated in clinical trials for lung and metastatic breast cancer, wherein subsets of patients responded despite advanced disease. By modifying structures of known rexinoids, we can improve potency and toxicity. We previously screened a series of novel rexinoids and selected V-125 as the lead based on performance in optimized in vitro assays. To validate our screening paradigm, we tested V-125 in clinically relevant mouse models of breast and lung cancer. V-125 significantly (p < 0.001) increased time to tumor development in the MMTV-Neu breast cancer model. Treatment of established mammary tumors with V-125 significantly (p < 0.05) increased overall survival. In the A/J lung cancer model, V-125 significantly (p < 0.01) decreased number, size, and burden of lung tumors. Although bexarotene elevated triglycerides and cholesterol in these models, V-125 demonstrated an improved safety profile. These studies provide evidence that our screening paradigm predicts novel rexinoid efficacy and suggest that V-125 could be developed into a new cancer therapeutic.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Retinoid X Receptors/agonists , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Transgenic , Retinoid X Receptors/metabolism , Signal Transduction , Time Factors , Tumor Burden/drug effects
12.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830251

ABSTRACT

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Subject(s)
Antineoplastic Agents/pharmacology , Apolipoproteins E/genetics , Bexarotene/pharmacology , Leukocytes/drug effects , Nicotinic Acids/pharmacology , Retinoid X Receptor alpha/agonists , Animals , Antineoplastic Agents/chemical synthesis , Apolipoproteins E/metabolism , Bexarotene/analogs & derivatives , Bexarotene/chemical synthesis , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression , Humans , Leukocytes/metabolism , Leukocytes/pathology , Nicotinic Acids/chemical synthesis , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Structure-Activity Relationship
13.
JBMR Plus ; 5(1): e10432, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33553988

ABSTRACT

The hormonal vitamin D metabolite, 1,25-dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand-controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D-regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D-hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor-23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR-RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D-liganded VDR-RXR functions in osteoblasts/osteocytes by augmenting RANK-ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR-mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR-RXR on a VDRE at -35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c-ets1-P, binds to an enhancer element centered at -263 bp in the promoter-proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D-induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
ACS Chem Neurosci ; 12(5): 857-871, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33570383

ABSTRACT

There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.


Subject(s)
Apolipoproteins E , Glioblastoma , Retinoid X Receptors/agonists , Tyrosine 3-Monooxygenase , Cell Line, Tumor , Humans , Signal Transduction
15.
J Gastrointest Cancer ; 52(3): 940-946, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32918272

ABSTRACT

PURPOSE: Prior work has shown that higher circulating concentrations of fibroblast growth factor-21 (FGF-21) are associated with an increased likelihood of developing colorectal cancer. We conducted a prospective study to assess the relationship between circulating FGF-21 and odds of developing early neoplastic lesions in the colorectum. METHODS: A total of 94 study participants were included from the ursodeoxycholic acid (UDCA) trial, a phase III, randomized, double-blind, placebo-controlled clinical trial of the effect of 8-10 mg/kg of body weight UDCA vs. placebo. Logistic regression analyses were conducted to evaluate the association between baseline FGF-21 concentrations and odds of developing a metachronous adenoma. RESULTS: Of the characteristics compared across tertiles of FGF-21 concentrations, including age, race, sex, BMI, and other variables, only a previous personal history of colorectal polyps prior to entry into the UDCA trial was statistically significantly related to FGF-21 levels, with a proportion of 26.7%, 56.7%, and 50.0% across the first, second, and third tertiles, respectively (p < 0.05). Higher circulating concentrations of FGF-21 were statistically significantly associated with greater odds of developing a metachronous colorectal adenoma. After adjusting for potential confounders and when compared with the lowest tertile of FGF-21, the adjusted ORs (95% CIs) for metachronous colorectal adenoma in the second and third tertiles were 4.72 (95% CI, 1.42-15.72) and 3.82 (95% CI, 1.15-12.68), respectively (p trend < 0.05). CONCLUSION: Our results reveal for the first time that, in addition to a recently discovered association with colorectal cancer, circulating FGF-21 concentrations are significantly and directly associated with odds of developing metachronous colorectal adenoma.


Subject(s)
Adenoma/blood , Colorectal Neoplasms/blood , Fibroblast Growth Factors/blood , Neoplasms, Second Primary/blood , Adenoma/drug therapy , Adenoma/pathology , Aged , Aged, 80 and over , Arizona , Cholagogues and Choleretics/therapeutic use , Clinical Trials, Phase III as Topic , Colonic Polyps/blood , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Female , Humans , Male , Middle Aged , Neoplasms, Second Primary/drug therapy , Neoplasms, Second Primary/pathology , Prospective Studies , Randomized Controlled Trials as Topic , Risk Factors , Ursodeoxycholic Acid/therapeutic use
16.
Biochem Biophys Rep ; 24: 100825, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33088927

ABSTRACT

Mediated by the nuclear vitamin D receptor (VDR), the hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D), is known to regulate expression of genes impacting calcium and phosphorus metabolism, the immune system, and behavior. Urolithin A, a nutrient metabolite derived from pomegranate, possibly acting through AMP kinase (AMPK) signaling, supports respiratory muscle health in rodents and longevity in C. elegans by inducing oxidative damage-reversing genes and mitophagy. We show herein that urolithin A enhances transcriptional actions of 1,25D driven by co-transfected vitamin D responsive elements (VDREs), and dissection of this genomic effect in cell culture reveals: 1) urolithin A concentration-dependency, 2) occurrence with isolated natural VDREs, 3) nuclear receptor selectivity for VDR over ER, LXR and RXR, and 4) significant 3- to 13-fold urolithin A-augmentation of 1,25D-dependent mRNA encoding the widely expressed 1,25D-detoxification enzyme, CYP24A1, a benchmark vitamin D target gene. Relevant to potential behavioral effects of vitamin D, urolithin A elicits enhancement of 1,25D-dependent mRNA encoding tryptophan hydroxylase-2 (TPH2), the serotonergic neuron-expressed initial enzyme in tryptophan metabolism to serotonin. Employing quantitative real time-PCR, we demonstrate that TPH2 mRNA is induced 1.9-fold by 10 nM 1,25D treatment in culture of differentiated rat serotonergic raphe (RN46A-B14) cells, an effect magnified 2.5-fold via supplementation with 10 µM urolithin A. This potentiation of 1,25D-induced TPH2 mRNA by urolithin A is followed by a 3.1- to 3.7-fold increase in serotonin concentration in culture medium from the pertinent neuronal cell line, RN46A-B14. These results are consistent with the concept that two natural nutrient metabolites, urolithin A from pomegranate and 1,25D from sunlight/vitamin D, likely acting via AMPK and VDR, respectively, cooperate mechanistically to effect VDRE-mediated regulation of gene expression in neuroendocrine cells. Finally, gedunin, a neuroprotective natural product from Indian neem tree that impacts the brain derived neurotropic factor pathway, similarly potentiates 1,25D/VDR-action.

17.
Chem Biol Drug Des ; 95(5): 493-502, 2020 05.
Article in English | MEDLINE | ID: mdl-31444840

ABSTRACT

Poria cocos is an edible and medicinal fungus that is widely used in Traditional Chinese Medicines as well as in modern applications. Retinoid X receptor (RXR) occupies a central place in nuclear receptor signaling, and a pharmacological RXR-dependent pathway is involved in myeloid cell function. Here, structural information for 82 triterpenes from P. cocos and 17 known RXR agonists was collected in a compound library and retrieved for a molecular docking study. Three triterpenes, 16α-hydroxytrametenolic acid (HTA), pachymic acid (PA), and polyporenic acid C (PPAC), were identified as novel RXR-specific agonists based on luciferase reporter assays and in silico evidence. Treatment with HTA, PA, and PPAC significantly induced differentiation of the human promyelocytic leukemia cell line HL-60 with EC50 values of 21.0 ± 0.52, 6.7 ± 0.37, and 9.4 ± 0.65 µM, respectively. These effects were partly blocked by the RXR antagonist UVI3003, suggesting that an RXR-dependent pathway may play an important role in their anti-acute promyelocytic leukemia (APL) effects. Taken together, triterpenes from P. cocos are revealed as naturally occurring RXR selective agonists with the potential for anti-cancer activity. These results suggest a novel approach to the treatment or prevention of APL.


Subject(s)
Retinoid X Receptors/agonists , Triterpenes/chemistry , Wolfiporia/chemistry , Binding Sites , Cell Differentiation/drug effects , HL-60 Cells , Humans , Lanosterol/analogs & derivatives , Lanosterol/chemistry , Lanosterol/metabolism , Lanosterol/pharmacology , Ligands , Molecular Docking Simulation , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/metabolism , Retinoid X Receptors/metabolism , Thermodynamics , Triterpenes/isolation & purification , Triterpenes/metabolism , Triterpenes/pharmacology , Wolfiporia/metabolism
18.
J Agric Food Chem ; 67(39): 10871-10879, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31517482

ABSTRACT

This study evaluated the effect of triterpenoids from edible mushroom Poria cocos on intestinal epithelium integrity and revealed the transcriptional regulatory pathways that underpin restorative mechanisms in the gut. Based on computational docking studies, transcriptional activation experiments and glucocorticoid receptor (GR) protein immunofluorescence localization assays in cultured cells, 16α-hydroxytrametenolic acid (HTA) was discovered as a novel GR agonist in this study. HTA ameliorates TNF-α-induced Caco-2 monolayer intestinal epithelial barrier damage and suppressed activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt), which attenuated downstream IκB and nuclear factor kappa-B (NF-κB) phosphorylation through GR activation. Moreover, HTA prevented NF-κB translocation into the nucleus and binding to its cis-element and suppressed lipopolysaccharide-induced downstream NO production and pro-inflammatory cytokines at both protein and mRNA expression levels. In conclusion, HTA from P. cocos improves intestinal barrier function through a GR-mediated PI3K/Akt/NF-κB signaling pathway and may be potentially exploited as a supportive dietary therapeutic strategy for restoring gut health.


Subject(s)
Intestinal Mucosa/drug effects , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Glucocorticoid/metabolism , Triterpenes/pharmacology , Wolfiporia/chemistry , Caco-2 Cells , Humans , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Intestinal Mucosa/metabolism , Molecular Docking Simulation , NF-kappa B/genetics , Phosphatidylinositol 3-Kinase/genetics , Phosphorylation , Plant Extracts/chemistry , Proto-Oncogene Proteins c-akt/genetics , Receptors, Glucocorticoid/genetics , Signal Transduction/drug effects , Triterpenes/chemistry , Vegetables/chemistry
19.
Methods Mol Biol ; 2019: 109-121, 2019.
Article in English | MEDLINE | ID: mdl-31359392

ABSTRACT

The methods described in this chapter concern procedures for the design, synthesis, and in vitro biological evaluation of an array of potent retinoid-X-receptor (RXR) agonists employing 6-(ethyl(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN), and recently reported NEt-TMN analogs, as a case study. These methods have been extensively applied beyond the present case study to generate several analogs of other potent RXR agonists (rexinoids), particularly the RXR agonist known as bexarotene (Bex), a Food and Drug Administration (FDA) approved drug for cutaneous T-cell lymphoma that is also often prescribed, off-label, for breast, lung, and other human cancers. Common side effects with Bex treatment include hypertriglyceridemia and hypothyroidism, because of off-target activation or inhibition of other nuclear receptor pathways impacted by RXR. Because rexinoids are often selective for RXR, versus the retinoic-acid-receptor (RAR), cutaneous toxicity is often avoided as a side effect for rexinoid treatment. Several other potent RXR agonists, and their analogs, have been reported in the literature and rigorously evaluated (often in comparison to Bex) as potential cancer therapeutics with unique activity and side-effect profiles. Some of the more prominent examples include LGD100268, CD3254, and 9-cis-UAB30, to name only a few. Hence, the methods described herein are more widely applicable to a diverse array of RXR agonists.In terms of design, the structure-activity relationship (SAR) study is usually performed by modifying three distinct areas of the rexinoid base structure, either of the nonpolar or polar sides of the rexinoid and/or the linkage that joins them. For the synthesis of the modified base-structure analogs, often identical synthetic strategies used to access the base-structure are applied; however, reasonable alternative synthetic routes may need to be explored if the modified analog intermediates encounter bottlenecks where yields are negligible for a given step in the base-structure route. In fact, this particular problem was encountered and successfully resolved in our case study for generating an array of NEt-TMN analogs.


Subject(s)
Antineoplastic Agents/chemical synthesis , Retinoid X Receptors/agonists , Tetrahydronaphthalenes/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Humans , Molecular Structure , Retinoid X Receptors/chemistry , Structure-Activity Relationship , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology
20.
Methods Mol Biol ; 2019: 95-108, 2019.
Article in English | MEDLINE | ID: mdl-31359391

ABSTRACT

This chapter outlines the materials, methods, and procedures for the in vitro biological evaluation of retinoid-X-receptor (RXR) agonists including 6-(ethyl(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN), as well as several NEt-TMN analog compounds recently reported by our group. These methods have general applicability beyond this NEt-TMN case study, and can be employed to characterize and biologically evaluate other putative RXR agonists (rexinoids), and benchmarked against perhaps the most common rexinoid known as bexarotene (Bex), a drug awarded FDA approval for the treatment of cutaneous T-cell lymphoma in 1999 but that is also prescribed for non-small cell lung cancer and continues to be explored in multiple human cancer types. The side-effect profile of Bex treatment includes hypothyroidism and hypertriglyceridemia arising from the inhibition or activation of additional nuclear receptors that partner with RXR. Because rexinoids often exhibit selectivity for RXR activation, versus activating the retinoic-acid-receptor (RAR), rexinoid treatment avoids the cutaneous toxicity commonly associated as a side effect with retinoids. There are many examples of other potent rexinoids, where biological evaluation has contributed useful insight into qSAR studies on these compounds, often also benchmarked to Bex, as potential treatments for cancer. Because of differential pleiotropy in other pathways, even closely related rexinoids display unique side-effect and activity profiles. Notable examples of potent rexinoids in addition to Bex and NEt-TMN include CD3254, LGD100268, and 9-cis-UAB30. Indeed, the methods described herein to evaluate NEt-TMN and analogous rexinoids are generally applicable to a wider variety of potent, moderate, and even weak RXR ligands.In terms of in vitro biological evaluation, methods for a rapid and preliminary assessment of rexinoid activity are described by employing a biologically relevant, RXR-responsive element (RXRE)-mediated transcription assay in mammalian cells. In addition, a second, more sensitive assay is also detailed that utilizes activation of RXR-RXR homodimers in the context of a mammalian two-hybrid (M2H) luciferase assay. Methods for applying the M2H assay at different rexinoid concentrations are further described for the determination of EC50 values for rexinoids from dose-response curves.


Subject(s)
Retinoid X Receptor alpha/agonists , Tetrahydronaphthalenes/pharmacology , Coumaric Acids/pharmacology , Drug Evaluation, Preclinical , Gene Expression Regulation , HEK293 Cells , Humans , Retinoids/pharmacology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...