Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Neuroendocrinology ; 113(8): 795-810, 2023.
Article in English | MEDLINE | ID: mdl-36917957

ABSTRACT

INTRODUCTION: Corticotropin-releasing factor and its primary receptor (CRFR1) are critical regulators of behavioral and neuroendocrine stress responses. CRFR1 has also been associated with stress-related behavioral changes in postpartum mice. Our previous studies indicate dynamic changes in CRFR1 levels and coupling of CRFR1 with tyrosine hydroxylase (TH) and oxytocin (OT) neurons in postpartum mice. In this study, we aimed to determine the time course of these changes during the postpartum period. METHODS: Using a CRFR1-GFP reporter mouse line, we compared postpartum mice at five time points with nulliparous mice. We performed immunohistochemistry to assess changes in CRFR1 levels and changes in co-expression of TH/CRFR1-GFP and OT/CRFR1-GFP across the postpartum period. Mice were also assessed for behavioral stress responses in the open field test. RESULTS: Relative to nulliparous mice, CRFR1 levels were elevated in the anteroventral periventricular nucleus (AVPV/PeN) but were decreased in the medial preoptic area from postpartum day 1 (P1) through P28. In the paraventricular hypothalamus (PVN), there is a transient decline in CRFR1 mid-postpartum with a nadir at P7. Co-localization of CRFR1 with TH-expressing neurons was also altered with a transient decrease found in the AVPV/PeN at P7 and P14. Co-expression of CRFR1 and OT neurons of the PVN and supraoptic nucleus was dramatically altered with virtually no co-expression found in nulliparous mice, but levels increased shortly after parturition and peaked near P21. A transient decrease in open field center time was found at P7, indicating elevated anxiety-like behavior. CONCLUSION: This study revealed various changes in CRFR1 across the postpartum period, which may contribute to stress-related behavior changes in postpartum mice.


Subject(s)
Corticotropin-Releasing Hormone , Oxytocin , Female , Humans , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Tyrosine 3-Monooxygenase , Receptors, Corticotropin-Releasing Hormone/metabolism , Anxiety , Postpartum Period , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
2.
Psychoneuroendocrinology ; 145: 105918, 2022 11.
Article in English | MEDLINE | ID: mdl-36116320

ABSTRACT

Oxytocin (OT) is essential for successful reproduction, particularly during parturition and lactation. During the postpartum period, OT also influences maternal behavior to promote bonding between mothers and their newborns, and increases stress resilience. However, the mechanism by which stress influences OT neuron activity and OT release has remained unclear. Here, we provide evidence that a subpopulation of OT neurons initiate expression of the receptor for the stress neuropeptide Corticotropin Releasing Factor (CRF), CRFR1, in reproductive females. OT neuron expression of CRFR1 begins at the first parturition and increases during the postpartum period until weaning. The percentage of OT neurons that express CRFR1 increases with successive breeding cycles until it reaches a plateau of 20-25% of OT neurons. OT neuron expression of CRFR1 in reproductive females is maintained after they are no longer actively breeding. CRFR1 expression leads to activation of OT neurons when animals are stressed. We propose a model in which direct CRF signaling to OT neurons selectively in reproductive females potentiates OT release to promote stress resilience in mothers.


Subject(s)
Corticotropin-Releasing Hormone , Oxytocin , Animals , Corticotropin-Releasing Hormone/metabolism , Female , Neurons/metabolism , Oxytocin/metabolism , Parturition , Pregnancy , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism
3.
Elife ; 112022 04 07.
Article in English | MEDLINE | ID: mdl-35389341

ABSTRACT

Corticotropin-releasing factor type-1 (CRF1) receptors are critical to stress responses because they allow neurons to respond to CRF released in response to stress. Our understanding of the role of CRF1-expressing neurons in CRF-mediated behaviors has been largely limited to mouse experiments due to the lack of genetic tools available to selectively visualize and manipulate CRF1+ cells in rats. Here, we describe the generation and validation of a transgenic CRF1-Cre-tdTomato rat. We report that Crhr1 and Cre mRNA expression are highly colocalized in both the central amygdala (CeA), composed of mostly GABAergic neurons, and in the basolateral amygdala (BLA), composed of mostly glutamatergic neurons. In the CeA, membrane properties, inhibitory synaptic transmission, and responses to CRF bath application in tdTomato+ neurons are similar to those previously reported in GFP+ cells in CRFR1-GFP mice. We show that stimulatory DREADD receptors can be targeted to CeA CRF1+ cells via virally delivered Cre-dependent transgenes, that transfected Cre/tdTomato+ cells are activated by clozapine-n-oxide in vitro and in vivo, and that activation of these cells in vivo increases anxiety-like and nocifensive behaviors. Outside the amygdala, we show that Cre-tdTomato is expressed in several brain areas across the brain, and that the expression pattern of Cre-tdTomato cells is similar to the known expression pattern of CRF1 cells. Given the accuracy of expression in the CRF1-Cre rat, modern genetic techniques used to investigate the anatomy, physiology, and behavioral function of CRF1+ neurons can now be performed in assays that require the use of rats as the model organism.


Subject(s)
Central Amygdaloid Nucleus , Corticotropin-Releasing Hormone , Animals , Anxiety , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Integrases , Mice , Nociception , Rats , Rats, Transgenic , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism
4.
Horm Behav ; 135: 105044, 2021 09.
Article in English | MEDLINE | ID: mdl-34507241

ABSTRACT

Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine, and behavioral responses to stress, as well as behavioral changes during the maternal period. Previous work in our lab reported higher levels of CRFR1 in female, compared to male, mice within the rostral anteroventral periventricular nucleus (AVPV/PeN), a brain region involved in maternal behaviors. In this study, we used CRFR1-GFP reporter mice to investigate whether the reproductive status (postpartum vs. nulliparous) of acutely stressed females affects levels of CRFR1 in the AVPV/PeN and other regions involved in maternal functions. Compared to nulliparous, postpartum day 14 females showed increased AVPV/PeN CRFR1-GFP immunoreactivity and an elevated number of restraint stress-activated AVPV/PeN CRFR1 cells as assessed by immunohistochemical co-localization of CRFR1-GFP and phosphorylated CREB (pCREB). The medial preoptic area (MPOA) and paraventricular hypothalamus (PVN) of postpartum mice showed modest decreases in CRFR1-GFP immunoreactivity, while increased CRFR1-GFP/pCREB co-expressing cells were found in the PVN following restraint stress relative to nulliparous mice. Tyrosine hydroxylase (TH) and CRFR1-GFP co-localization was also assessed in the AVPV/PeN and other regions and revealed a decrease in co-localized neurons in the AVPV/PeN and ventral tegmental area of postpartum mice. Corticosterone analysis of restrained mice revealed blunted peak, but elevated recovery, levels in postpartum compared to nulliparous mice. Finally, we investigated projection patterns of AVPV/PeN CRFR1 neurons using female CRFR1-Cre mice and revealed dense efferent projections to several preoptic, hypothalamic, and hindbrain regions known to control stress-associated and maternal functions. Together, these findings contribute to our understanding of the neurobiology that might underlie changes in stress-related functions during the postpartum period.


Subject(s)
Corticotropin-Releasing Hormone , Receptors, Corticotropin-Releasing Hormone , Animals , Corticotropin-Releasing Hormone/metabolism , Female , Humans , Hypothalamus/metabolism , Male , Mice , Postpartum Period , Preoptic Area/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism
5.
J Neurosci ; 41(18): 4036-4059, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33731450

ABSTRACT

We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.


Subject(s)
Globus Pallidus/cytology , Globus Pallidus/physiology , Motor Activity/physiology , Neurons/physiology , Animals , Anxiety/psychology , Basic Helix-Loop-Helix Transcription Factors/genetics , Behavior, Animal , Biomechanical Phenomena , Electrophysiological Phenomena , Female , Machine Learning , Male , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/physiology , Nerve Tissue Proteins/genetics , Optogenetics , Potassium Channels, Voltage-Gated/genetics , Receptors, Atrial Natriuretic Factor/genetics
6.
J Neurosci ; 41(7): 1489-1504, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33397711

ABSTRACT

Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.


Subject(s)
Neural Inhibition/physiology , Photoreceptor Cells, Vertebrate/physiology , Retina/physiology , Retinal Ganglion Cells/physiology , Amacrine Cells/physiology , Animals , Corticotropin-Releasing Hormone/physiology , Electrophysiological Phenomena , Excitatory Postsynaptic Potentials/physiology , Female , Gap Junctions/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Optogenetics , Photoreceptor Cells, Vertebrate/drug effects , Retinal Cone Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/drug effects , Rod Opsins/metabolism , Synapses/physiology , gamma-Aminobutyric Acid/physiology
7.
Physiol Behav ; 219: 112847, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32081812

ABSTRACT

Anxiety and depression are strikingly more prevalent in women compared with men. Dysregulation of corticotropin-releasing factor (CRF) binding to its cognate receptor (CRFR1) is thought to play a critical role in the etiology of these disorders. In the present study, we investigated whether there were sex differences in the effects of chronic variable stress (CVS) on CRFR1 cells using CRFR1-GFP reporter mice experiencing a 9-day CVS paradigm. Brains were collected from CVS and stress naïve female and male mice following exposure to the open field test. This CVS paradigm effectively increased anxiety-like behavior in female and male mice. In addition, we assessed changes in activation of CRFR1 cells (co-localization with c-Fos and phosphorylated CREB (pCREB)) in stress associated brain structures, including two sexually dimorphic CRFR1 cell groups in the anteroventral periventricular nucleus (AVPV/PeN; F>M) and paraventricular hypothalamus (PVN; M>F). CVS increased CRFR1-GFP cell number as well as the number of CRFR1/pCREB co-expressing cells in the female but not male AVPV/PeN. In the PVN, the number of CRFR1/pCREB co-expressing cells was overall greater in males regardless of treatment and CVS resulted in a male-specific reduction of CRFR1/c-Fos cells. In addition, CVS induced a female-specific reduction in CRFR1/c-Fos cells within the anteroventral bed nucleus of the stria terminalis and both sexes exhibited a reduction in CRFR1/c-Fos co-expressing cells following CVS within the ventral basolateral amygdala. Overall, these sex-specific effects of CVS on CRFR1 populations may have implications for sex differences in stress-induction of mood disorders.


Subject(s)
Corticotropin-Releasing Hormone , Receptors, Corticotropin-Releasing Hormone , Animals , Anxiety , Female , Male , Mice , Sex Characteristics
9.
J Neurosci ; 40(4): 743-768, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31811030

ABSTRACT

Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined. In this study, we leverage new mouse lines, viral tools, and molecular markers to better define GPe neuron subtypes. We found that Sox6 represents a novel, defining marker for GPe neuron subtypes. Lhx6+ neurons that lack the expression of Sox6 were devoid of both parvalbumin and Npas1. This result confirms previous assertions of the existence of a unique Lhx6+ population. Neurons that arise from the Dbx1+ lineage were similarly abundant in the GPe and displayed a heterogeneous makeup. Importantly, tracing experiments revealed that Npas1+-Nkx2.1+ neurons represent the principal noncholinergic, cortically-projecting neurons. In other words, they form the pallido-cortical arm of the cortico-pallido-cortical loop. Our data further show that pyramidal-tract neurons in the cortex collateralized within the GPe, forming a closed-loop system between the two brain structures. Overall, our findings reconcile some of the discrepancies that arose from differences in techniques or the reliance on preexisting tools. Although spatial distribution and electrophysiological properties of GPe neurons reaffirm the diversification of GPe subtypes, statistical analyses strongly support the notion that these neuron subtypes can be categorized under the two principal neuron classes: PV+ neurons and Npas1+ neurons.SIGNIFICANCE STATEMENT The poor understanding of the neuronal composition in the external globus pallidus (GPe) undermines our ability to interrogate its precise behavioral and disease involvements. In this study, 12 different genetic crosses were used, hundreds of neurons were electrophysiologically characterized, and >100,000 neurons were histologically- and/or anatomically-profiled. Our current study further establishes the segregation of GPe neuron classes and illustrates the complexity of GPe neurons in adult mice. Our results support the idea that Npas1+-Nkx2.1+ neurons are a distinct GPe neuron subclass. By providing a detailed analysis of the organization of the cortico-pallidal-cortical projection, our findings establish the cellular and circuit substrates that can be important for motor function and dysfunction.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cerebral Cortex/metabolism , Globus Pallidus/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Thyroid Nuclear Factor 1/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neural Pathways/metabolism , Thyroid Nuclear Factor 1/genetics
10.
Neurobiol Stress ; 11: 100192, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31516918

ABSTRACT

The importance of a precisely coordinated neuroendocrine, autonomic, and behavioral stress response was a primary theme at the Stress Neurobiology Workshop 2018, held in the beautiful setting of Banff Provincial Park in Alberta, Canada. Much of the research featured at this meeting reinforced the importance of appropriately responding to stress in order to avoid various neuropsychiatric pathologies, including Post-Traumatic Stress Disorder (PTSD), depression, and addiction. Corticotropin-Releasing Factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVN) are central players in the stress response, integrating both external and visceral stress-relevant information, then directing neuroendocrine, autonomic and behavioral adaptations via endocrine and neural outputs of the PVN. The PVN contains a densely packed array of neuron types that respond to stress, including CRF neurons that activate the Hypothalamic-Pituitary-Adrenal (HPA) axis. Recently, identification of a new population of neurons in the PVN that express CRF Receptor 1 (CRFR1) has suggested that CRF release in the PVN signals to neighboring CRF responsive neurons, potentially functioning in HPA axis feedback, neuroendocrine coordination, and autonomic signaling. Here, we review our recent work characterizing an intra-PVN microcircuit in which locally released CRF release activates CRFR1+ neurons that make recurrent inhibitory GABAergic synapses onto CRF neurons to dampen excitability , therebylimiting HPA axis hyperactivity in response to stress and promoting stress recovery, which we presented in a poster session at the conference. We then discuss questions that have arisen following publication of our initial characterization of the microcircuit, regarding specific features of intra-PVN CRF signaling and its potential role in coordinating neuroendocrine, autonomic, and behavioral outputs of the PVN. Our presented work, as well as many of the presentations at the Stress Neurobiology Workshop 2018 together establish intra-PVN signaling as an important regulatory node in stress response pathways, which are central to the pathogenesis of neuropsychiatric disorders.

11.
Nat Commun ; 10(1): 3446, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31371721

ABSTRACT

Feeding is known to be profoundly affected by stress-related emotional states and eating disorders are comorbid with psychiatric symptoms and altered emotional responses. The neural basis underlying feeding regulation by stress-related emotional changes is poorly understood. Here, we identify a novel projection from the paraventricular hypothalamus (PVH) to the ventral lateral septum (LSv) that shows a scalable regulation on feeding and behavioral changes related to emotion. Weak photostimulation of glutamatergic PVH→LSv terminals elicits stress-related self-grooming and strong photostimulation causes fear-related escape jumping associated with respective weak and strong inhibition on feeding. In contrast, inhibition of glutamatergic inputs to LSv increases feeding with signs of reduced anxiety. LSv-projecting neurons are concentrated in rostral PVH. LSv and LSv-projecting PVH neurons are activated by stressors in vivo, whereas feeding bouts were associated with reduced activity of these neurons. Thus, PVH→LSv neurotransmission underlies dynamic feeding by orchestrating emotional states, providing a novel neural circuit substrate underlying comorbidity between eating abnormalities and psychiatric disorders.


Subject(s)
Feeding Behavior/physiology , Neurons/physiology , Paraventricular Hypothalamic Nucleus/physiology , Psychological Distress , Animals , Behavior, Animal , Excitatory Amino Acid Agents , Feeding and Eating Disorders , Grooming/physiology , Male , Mice , Models, Animal , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
12.
Neuroscience ; 409: 195-203, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31055007

ABSTRACT

Sex differences in neural structures are generally believed to underlie sex differences reported in anxiety, depression, and the hypothalamic-pituitary-adrenal axis, although the specific circuitry involved is largely unclear. Using a corticotropin-releasing factor receptor 1 (CRFR1) reporter mouse line, we report a sexually dimorphic distribution of CRFR1 expressing cells within the paraventricular hypothalamus (PVN; males > females). Relative to adult levels, PVN CRFR1-expressing cells are sparse and not sexually dimorphic at postnatal days 0, 4, or 21. This suggests that PVN cells might recruit CRFR1 during puberty or early adulthood in a sex-specific manner. The adult sex difference in PVN CRFR1 persists in old mice (20-24 months). Adult gonadectomy (6 weeks) resulted in a significant decrease in CRFR1-immunoreactive cells in the male but not female PVN. CRFR1 cells show moderate co-expression with estrogen receptor alpha (ERα) and high co-expression with androgen receptor, indicating potential mechanisms through which circulating gonadal hormones might regulate CRFR1 expression and function. Finally, we demonstrate that a psychological stressor, restraint stress, induces a sexually dimorphic pattern of neural activation in PVN CRFR1 cells (males >females) as assessed by co-localization with the transcription/neural activation marker phosphorylated CREB. Given the known role of CRFR1 in regulating stress-associated behaviors and hormonal responses, this CRFR1 PVN sex difference might contribute to sex differences in these functions.


Subject(s)
Hypothalamo-Hypophyseal System/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Sex Characteristics , Stress, Psychological/metabolism , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Estrogen Receptor alpha/metabolism , Female , Male , Mice , Mice, Transgenic , Phosphorylation , Restraint, Physical
13.
J Comp Neurol ; 527(6): 1056-1069, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30499109

ABSTRACT

Corticotropin-releasing factor binds with high affinity to CRF receptor 1 (CRFR1) and is implicated in stress-related mood disorders such as anxiety and depression. Using a validated CRFR1-green fluorescent protein (GFP) reporter mouse, our laboratory recently discovered a nucleus of CRFR1 expressing cells that is prominent in the female rostral anteroventral periventricular nucleus (AVPV/PeN), but largely absent in males. This sex difference is present in the early postnatal period and remains dimorphic into adulthood. The present investigation sought to characterize the chemical composition and gonadal hormone regulation of these sexually dimorphic CRFR1 cells using immunohistochemical procedures. We report that CRFR1-GFP-ir cells within the female AVPV/PeN are largely distinct from other dimorphic cell populations (kisspeptin, tyrosine hydroxylase). However, CRFR1-GFP-ir cells within the AVPV/PeN highly co-express estrogen receptor alpha as well as glucocorticoid receptor. A single injection of testosterone propionate or estradiol benzoate on the day of birth completely eliminates the AVPV/PeN sex difference, whereas adult gonadectomy has no effect on CRFR1-GFP cell number. These results indicate that the AVPV/PeN CRFR1 is regulated by perinatal but not adult gonadal hormones. Finally, female AVPV/PeN CRFR1-GFP-ir cells are activated following an acute 30-min restraint stress, as assessed by co-localization of CRFR1-GFP cells with phosphorylated (p) CREB. CRFR1-GFP/pCREB cells were largely absent in the male AVPV/PeN. Together, these data indicate a stress and gonadal hormone responsive nucleus that is unique to females and may contribute to sex-specific stress responses.


Subject(s)
Hypothalamus, Anterior/cytology , Neurons/cytology , Receptors, Corticotropin-Releasing Hormone/metabolism , Sex Characteristics , Animals , Female , Gonadal Hormones/physiology , Hypothalamus, Anterior/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism
14.
Neurobiol Stress ; 8: 127-133, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29888308

ABSTRACT

Stress is critically involved in the development and progression of disease. From the stress of undergoing treatments to facing your own mortality, the physiological processes that stress drives have a serious detrimental effect on the ability to heal, cope and maintain a positive quality of life. This is becoming increasingly clear in the case of neurodegenerative diseases. Neurodegenerative diseases involve the devastating loss of cognitive and motor function which is stressful in itself, but can also disrupt neural circuits that mediate stress responses. Disrupting these circuits produces aberrant emotional and aggressive behavior that causes long-term care to be especially difficult. In addition, added stress drives progression of the disease and can exacerbate symptoms. In this review, I describe how neural and endocrine pathways activated by stress interact with ongoing neurodegenerative disease from both a clinical and experimental perspective.

15.
Brain Struct Funct ; 223(6): 2685-2698, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29569009

ABSTRACT

Stress evokes directed movement to escape or hide from potential danger. Corticotropin-releasing factor (CRF) neurons are highly activated by stress; however, it remains unclear how this activity participates in stress-evoked movement. The external globus pallidus (GPe) expresses high levels of the primary receptor for CRF, CRFR1, suggesting the GPe may serve as an entry point for stress-relevant information to reach basal ganglia circuits, which ultimately gate motor output. Indeed, projections from CRF neurons are present within the GPe, making direct contact with CRFR1-positive neurons. CRFR1 expression is heterogenous in the GPe; prototypic GPe neurons selectively express CRFR1, while arkypallidal neurons do not. Moreover, CRFR1-positive GPe neurons are excited by CRF via activation of CRFR1, while nearby CRFR1-negative neurons do not respond to CRF. Using monosynaptic rabies viral tracing techniques, we show that CRF neurons in the stress-activated paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), and bed nucleus of the stria terminalis (BST) make synaptic connections with CRFR1-positive neurons in the GPe an unprecedented circuit connecting the limbic system with the basal ganglia. CRF neurons also make synapses on Npas1 neurons, although the majority of Npas1 neurons are arkypallidal and do not express CRFR1. Interestingly, prototypic and arkypallidal neurons receive different patterns of innervation from CRF-rich nuclei. Hypothalamic CRF neurons preferentially target prototypic neurons, while amygdalar CRF neurons preferentially target arkypallidal neurons, suggesting that these two inputs to the GPe may have different impacts on GPe output. Together, these data describe a novel neural circuit by which stress-relevant information carried by the limbic system signals in the GPe via CRF to influence motor output.


Subject(s)
Amygdala/cytology , Corticotropin-Releasing Hormone/metabolism , Globus Pallidus/cytology , Neurons/cytology , Paraventricular Hypothalamic Nucleus/cytology , Synapses/metabolism , Action Potentials/drug effects , Animals , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Transgenic , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Transduction, Genetic , Red Fluorescent Protein
16.
J Neurosci ; 38(8): 1874-1890, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29352046

ABSTRACT

Corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) initiate hypothalamic-pituitary-adrenal axis activity through the release of CRF into the portal system as part of a coordinated neuroendocrine, autonomic, and behavioral response to stress. The recent discovery of neurons expressing CRF receptor type 1 (CRFR1), the primary receptor for CRF, adjacent to CRF neurons within the PVN, suggests that CRF also signals within the hypothalamus to coordinate aspects of the stress response. Here, we characterize the electrophysiological and molecular properties of PVN-CRFR1 neurons and interrogate their monosynaptic connectivity using rabies virus-based tracing and optogenetic circuit mapping in male and female mice. We provide evidence that CRF neurons in the PVN form synapses on neighboring CRFR1 neurons and activate them by releasing CRF. CRFR1 neurons receive the majority of monosynaptic input from within the hypothalamus, mainly from the PVN itself. Locally, CRFR1 neurons make GABAergic synapses on parvocellular and magnocellular cells within the PVN. CRFR1 neurons resident in the PVN also make long-range glutamatergic synapses in autonomic nuclei such as the nucleus of the solitary tract. Selective ablation of PVN-CRFR1 neurons in male mice elevates corticosterone release during a stress response and slows the decrease in circulating corticosterone levels after the cessation of stress. Our experiments provide evidence for a novel intra-PVN neural circuit that is activated by local CRF release and coordinates autonomic and endocrine function during stress responses.SIGNIFICANCE STATEMENT The hypothalamic paraventricular nucleus (PVN) coordinates concomitant changes in autonomic and neuroendocrine function to organize the response to stress. This manuscript maps intra-PVN circuitry that signals via CRF, delineates CRF receptor type 1 neuron synaptic targets both within the PVN and at distal targets, and establishes the role of this microcircuit in regulating hypothalamic-pituitary-adrenal axis activity.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System , Neural Pathways/cytology , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System , Animals , Female , Hypothalamo-Hypophyseal System/anatomy & histology , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Neural Pathways/metabolism , Neurons/cytology , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Pituitary-Adrenal System/anatomy & histology , Pituitary-Adrenal System/metabolism , Signal Transduction/physiology
17.
Front Behav Neurosci ; 11: 221, 2017.
Article in English | MEDLINE | ID: mdl-29180955

ABSTRACT

The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH) system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1) in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA) system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT)-containing neurons (DAT-Crhr1) or dopamine receptor 1 (D1)-containing neurons (D1-Crhr1). For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP). For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion) self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.

18.
Neuroscience ; 361: 167-178, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28823817

ABSTRACT

Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. CRFR1 increased with age in several regions including the medial amygdala, arcuate nucleus, paraventricular hypothalamus, medial septum, CA1 hippocampal area, and the lateral habenula. Regions showing decreased CRFR1 expression with increased age include the intermediate portion of the periventricular hypothalamic nucleus, and CA3 hippocampal area. We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.


Subject(s)
Corticosterone/metabolism , Hypothalamus/growth & development , Prosencephalon/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Aging , Animals , Anxiety/physiopathology , Anxiety Disorders/metabolism , Female , Male , Maternal Behavior/physiology , Mice , Prosencephalon/growth & development , Sex Characteristics
19.
Elife ; 62017 01 05.
Article in English | MEDLINE | ID: mdl-28054918

ABSTRACT

Amyloid precursor protein (APP) is enriched at the synapse, but its synaptic function is still poorly understood. We previously showed that GABAergic short-term plasticity is impaired in App knock-out (App-/-) animals, but the precise mechanism by which APP regulates GABAergic synaptic transmission has remained elusive. Using electrophysiological, biochemical, moleculobiological, and pharmacological analysis, here we show that APP can physically interact with KCC2, a neuron-specific K+-Cl- cotransporter that is essential for Cl- homeostasis and fast GABAergic inhibition. APP deficiency results in significant reductions in both total and membrane KCC2 levels, leading to a depolarizing shift in the GABA reversal potential (EGABA). Simultaneous measurement of presynaptic action potentials and inhibitory postsynaptic currents (IPSCs) in hippocampal neurons reveals impaired unitary IPSC amplitudes attributable to a reduction in α1 subunit levels of GABAAR. Importantly, restoration of normal KCC2 expression and function in App-/- mice rescues EGABA, GABAAR α1 levels and GABAAR mediated phasic inhibition. We show that APP functions to limit tyrosine-phosphorylation and ubiquitination and thus subsequent degradation of KCC2, providing a mechanism by which APP influences KCC2 abundance. Together, these experiments elucidate a novel molecular pathway in which APP regulates, via protein-protein interaction with KCC2, GABAAR mediated inhibition in the hippocampus.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , GABAergic Neurons/physiology , Hippocampus/physiology , Symporters/metabolism , Animals , Gene Knock-In Techniques , Humans , Mice , Mice, Knockout
20.
J Neurosci ; 36(20): 5472-88, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27194328

ABSTRACT

UNLABELLED: Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT: An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Globus Pallidus/physiology , Nerve Tissue Proteins/metabolism , Neurons/physiology , Synaptic Potentials , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Globus Pallidus/cytology , Globus Pallidus/metabolism , Mice , Mice, Inbred C57BL , Motor Activity , Nerve Tissue Proteins/genetics , Neurons/metabolism , Optogenetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL