Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Vet Intern Med ; 37(6): 2219-2229, 2023.
Article in English | MEDLINE | ID: mdl-37682015

ABSTRACT

BACKGROUND: Urine is routinely evaluated in dogs to assess health. Reference ranges for many urine properties are well established, but the scope of variation in these properties over time within healthy dogs is not well characterized. OBJECTIVES: Longitudinally characterize urine properties in healthy dogs over 3 months. ANIMALS: Fourteen healthy client-owned dogs. METHODS: In this prospective study, dogs were evaluated for health; then, mid-stream free-catch urine was collected from each dog at 12 timepoints over 3 months. Urine pH, urine specific gravity (USG), protein, cultures, and antimicrobial resistance profiles were assessed at each timepoint. RESULTS: Urine pH varied within and between dogs over time (Friedman's test: within P = .03; between P < .005). However, USG, protein, and bacterial diversity of urine were consistent within dogs over time, and only varied between dogs (Kruskal-Wallis: between all P < .005). Antimicrobial resistant isolates were identified in 12 out of 14 dogs with 34 of 48 of the isolates demonstrating resistance to amoxicillin. CONCLUSIONS AND CLINICAL IMPORTANCE: Urine pH should be assessed at multiple timepoints via pH meter before making clinical decisions. Mid-stream free-catch urine with high concentrations of bacteria (>105 CFU/mL) should not be considered the only indicator of urinary tract infection. Bacterial isolates from dogs in this study had widespread resistance to amoxicillin/oxacillin underscoring the need for antimicrobial stewardship.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Dogs , Animals , Specific Gravity , Anti-Bacterial Agents/pharmacology , Prospective Studies , Amoxicillin , Hydrogen-Ion Concentration
2.
Am J Vet Res ; 84(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37353214

ABSTRACT

OBJECTIVES: To investigate the probiotic Escherichia coli Nissle 1917 (EcN) in canine idiopathic diarrhea and urinary tract infections. ANIMALS/SAMPLES: The utility of EcN was explored in a 3-phase study from March 2017 to June 2020. Eighty-nine dogs with idiopathic diarrhea were included in phase 1, 3 healthy dogs were included in phase 2, and uropathogenic E coli (UPEC) isolates from 38 dogs with urinary tract infections were included in phase 3. PROCEDURES: In phase 1, dogs with diarrhea were prospectively enrolled in a randomized study to receive EcN (108 EcN bacteria/mL; < 10 kg received 5 mL/dose, 10 to 25 kg received 10 mL/dose, or > 25 kg received 15 mL/dose) or placebo for 3 days, followed by a 15-day observation phase. In phase 2, healthy dogs received EcN as described in phase 1, with feces analyzed for E coli populations and microbiome composition at days 0, 3, and 7. In phase 3, EcN efficacy was tested by in vitro plate assay against UPEC isolates. RESULTS: Median duration of abnormal stool consistency, time to response, and duration of diarrhea were shorter for dogs that received EcN (5.0, 3.0, and 2.0 days, respectively) versus the placebo (7.0, 5.0, and 4.0 days, respectively) (P = .21, P = .05, and P = .039, respectively). EcN induced shifts in E coli diversity in healthy dogs while having minimal impact on overall microbiome structure. Furthermore, 68% of the canine UPEC isolates were susceptible to EcN in vitro. CLINICAL RELEVANCE: EcN improved the treatment of idiopathic diarrhea, colonized the gastrointestinal tract during the trial, and displayed in vitro competition with UPEC.


Subject(s)
Escherichia coli , Probiotics , Animals , Dogs , Diarrhea/drug therapy , Diarrhea/veterinary , Feces , Gastrointestinal Tract , Probiotics/pharmacology , Probiotics/therapeutic use
3.
Am J Vet Res ; 83(7)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35930788

ABSTRACT

OBJECTIVE: To characterize uropathogenic Escherichia coli (UPEC) in cases of clinical feline urinary tract infection (UTI) and subclinical bacteriuria and investigate the in vitro effects of E coli strain Nissle 1917 on isolate growth. ANIMALS: 40 cats with positive E coli culture results for urine collected during routine evaluation. PROCEDURES: Characterization of UPEC isolates was performed by PCR-based phylotype analysis and serotyping. Nissle 1917 effects on growth inhibition and competitive overgrowth against UPEC isolates were evaluated in vitro using a plate-based competition assay. RESULTS: Feline phylogroups were similar to previous human and feline UPEC studies, with most of the isolates belonging to phylogroup A (42.5%), B2 (37.5%), and D (15.0%). Fifty-two percent of isolates were found to be resistant to antimicrobials, with 19% of these being multidrug resistant (MDR). Nissle 1917 adversely affected the growth of 82.5% of all isolates and 100% of MDR isolates in vitro. The median zone of inhibition was 3.33 mm (range, 1.67 to 10.67 mm). Thirteen isolates were affected via competitive overgrowth and 20 via growth inhibition. CLINICAL RELEVANCE: UPEC isolates from cats were similar in phylogroup analysis to human and dog isolates. The in vitro effects of Nissle 1917 on UPEC warrant additional studies to determine if similar results can be duplicated in vivo.


Subject(s)
Cat Diseases , Escherichia coli Infections , Probiotics , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Cats , Escherichia coli Infections/veterinary , Humans , Phylogeny , Urinary Tract Infections/veterinary
4.
J Am Soc Nephrol ; 32(1): 69-85, 2021 01.
Article in English | MEDLINE | ID: mdl-33148615

ABSTRACT

BACKGROUND: In children, the acute pyelonephritis that can result from urinary tract infections (UTIs), which commonly ascend from the bladder to the kidney, is a growing concern because it poses a risk of renal scarring and irreversible loss of kidney function. To date, the cellular mechanisms underlying acute pyelonephritis-driven renal scarring remain unknown. METHODS: We used a preclinical model of uropathogenic Escherichia coli-induced acute pyelonephritis to determine the contribution of neutrophils and monocytes to resolution of the condition and the subsequent development of kidney fibrosis. We used cell-specific monoclonal antibodies to eliminate neutrophils, monocytes, or both. Bacterial ascent and the cell dynamics of phagocytic cells were assessed by biophotonic imaging and flow cytometry, respectively. We used quantitative RT-PCR and histopathologic analyses to evaluate inflammation and renal scarring. RESULTS: We found that neutrophils are critical to control bacterial ascent, which is in line with previous studies suggesting a protective role for neutrophils during a UTI, whereas monocyte-derived macrophages orchestrate a strong, but ineffective, inflammatory response against uropathogenic, E. coli-induced, acute pyelonephritis. Experimental neutropenia during acute pyelonephritis resulted in a compensatory increase in the number of monocytes and heightened macrophage-dependent inflammation in the kidney. Exacerbated macrophage-mediated inflammatory responses promoted renal scarring and compromised renal function, as indicated by elevated serum creatinine, BUN, and potassium. CONCLUSIONS: These findings reveal a previously unappreciated outcome for neutrophil-macrophage imbalance in promoting host susceptibility to acute pyelonephritis and the development of permanent renal damage. This suggests targeting dysregulated macrophage responses might be a therapeutic tool to prevent renal scarring during acute pyelonephritis.


Subject(s)
Cicatrix/physiopathology , Kidney/physiopathology , Macrophages/cytology , Neutrophils/cytology , Pyelonephritis/metabolism , Animals , Escherichia coli , Female , Fibrosis/microbiology , Fibrosis/physiopathology , Inflammation , Kidney/microbiology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Neutrophils/metabolism , Phagocytosis , Pyelonephritis/microbiology , Pyelonephritis/physiopathology , Urinary Tract Infections/microbiology , Urinary Tract Infections/physiopathology
5.
Front Pediatr ; 8: 542413, 2020.
Article in English | MEDLINE | ID: mdl-33364220

ABSTRACT

Introduction: The pediatric perineal microbiomes inhabit a dynamic environment with changes related to diet, toileting habits, and hormonal development. We hypothesized that next-generation sequencing would reveal different perineal bacterial signatures associated with developmental milestones in premenstrual females. Furthermore, we predicted that these microbial changes would be disrupted in premenstrual females with a history of urinary tract infection (UTI). Study Design: Healthy females were recruited at well-child visits. Subjects were divided into 4 developmental groups: (1) 0-3 month old newborns; (2) 4-10 month old infants transitioning to solid foods; (3) 2-6 year old toddlers peri-toilet training; and (4) 7-12 year old premenstrual girls. A separate group of females with a history of culture proven UTI and off antibiotics >1 month was also recruited. DNA was isolated from swabs of the perineum and subjected to 16S rRNA sequencing. The diversity and species changes between developmental cohorts and age matched children with history of UTI was determined. Results: A total of 75 subjects were recruited: 15 in each group. There was a clear evolution of the perineal microbiomes with development. There was a significant microbial disruption in girls with a history of UTI, irrespective of developmental milestone age group. The periurethral/perivaginal site displayed greater changes in microbiome structure than other sites in girls with a history of UTI. Discussion: This pilot study evaluates the normal microbiome of the premenstrual girl at specific developmental milestones. Although the number of children per cohort was limited to 15, we observed statistical significance corresponding with developmental milestones. This study provides the first, culture independent delineation of the development of the perineal microbiome in girls. Furthermore, the sites closest to the site of infection appear to be more sensitive to antibiotic remodeling than those more distant. The factors that remodel the perineal microbiomes and predispose females, particularly girls, to UTIs (e.g., increase in uropathogen presence, absence of protective organisms) are unclear. Identification of specific signatures that increase susceptibility to UTI and their sequelae will improve patient care and promote personalized medicine.

7.
Cell Rep ; 30(9): 2978-2988.e3, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130901

ABSTRACT

Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease severity. We use a pre-clinical model of otitis media (OM) to determine the potential role for microevolution of nontypeable Haemophilus influenzae (NTHI) during sequential episodes of disease. Whole genome sequencing reveals microevolution of hemoglobin binding and lipooligosaccharide (LOS) biosynthesis genes, suggesting that adaptation of these systems is critical for infection. These OM-adapted strains promote increased biofilm formation, inflammation, stromal fibrosis, and an increased propensity to form intracellular bacterial communities (IBCs). Remarkably, IBCs remain for at least one month following clinical resolution of infection, suggesting an intracellular reservoir as a nidus for recurrent OM. Additional approaches for therapeutic design tailored to combat this burdensome disease will arise from these studies.


Subject(s)
Disease Progression , Infections/pathology , Acute Disease , Adaptation, Physiological , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Biosynthetic Pathways/genetics , Chinchilla , Fibrosis , Glycosyltransferases/genetics , Haemophilus influenzae/physiology , Haptoglobins/metabolism , Hemoglobins/metabolism , Inflammation/pathology , Lipopolysaccharides/biosynthesis , Otitis Media/genetics , Otitis Media/microbiology , Polymorphism, Single Nucleotide/genetics , Stromal Cells/pathology
8.
NPJ Biofilms Microbiomes ; 5(1): 33, 2019.
Article in English | MEDLINE | ID: mdl-31700653

ABSTRACT

Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.


Subject(s)
Adaptation, Physiological , Biofilms/growth & development , Haemophilus influenzae/growth & development , Haemophilus influenzae/metabolism , Heme/metabolism , Microbial Viability , Gene Expression Profiling , Iron/metabolism , Metabolism , Metabolome , Proteome/analysis
10.
PLoS Pathog ; 14(10): e1007355, 2018 10.
Article in English | MEDLINE | ID: mdl-30332468

ABSTRACT

Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM.


Subject(s)
Haemophilus Infections/microbiology , Haemophilus influenzae/pathogenicity , Heme/deficiency , Iron Deficiencies , Otitis Media/microbiology , Virulence , Animals , Chinchilla , Disease Models, Animal , Ear, Middle/microbiology , Haemophilus Infections/metabolism , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Humans , Otitis Media with Effusion/microbiology , Phosphoric Diester Hydrolases/metabolism
11.
mSphere ; 3(5)2018 09 12.
Article in English | MEDLINE | ID: mdl-30209128

ABSTRACT

Nutrient limitation restricts bacterial growth in privileged sites such as the middle ear. Transient heme-iron restriction of nontypeable Haemophilus influenzae (NTHI), the major causative agent of chronic and recurrent otitis media (OM), promotes new and diverse phenotypes that can influence planktonic, biofilm, and intracellular lifestyles of NTHI. However, the bacterial responses to nutrient restriction that impact intracellular fate and survival of NTHI are unknown. In this work, we provide evidence for the role of transient heme-iron restriction in promoting the formation of intracellular bacterial communities (IBCs) of NTHI both in vitro and in vivo in a preclinical model of OM. We show that transient heme-iron restriction of NTHI results in significantly increased invasion and intracellular populations that escape or evade the endolysosomal pathway for increased intracellular survival. In contrast, NTHI continuously exposed to heme-iron traffics through the endolysosomal pathway for degradation. The use of pharmacological inhibitors revealed that prior heme-iron status does not appear to influence NTHI internalization through endocytic pathways. However, inhibition of macropinocytosis altered the intracellular fate of transiently restricted NTHI for degradation in the endolysosomal pathway. Furthermore, prevention of macropinocytosis significantly reduced the number of IBCs in cultured middle ear epithelial cells, providing evidence for the feasibility of this approach to reduce OM persistence. These results reveal that microenvironmental cues can influence the intracellular fate of NTHI, leading to new mechanisms for survival during disease progression.IMPORTANCE Otitis media is the most common bacterial infection in childhood. Current therapies are limited in the prevention of chronic or recurrent otitis media which leads to increased antibiotic exposure and represents a significant socioeconomic burden. In this study, we delineate the effect of nutritional limitation on the intracellular trafficking pathways used by nontypeable Haemophilus influenzae (NTHI). Moreover, transient limitation of heme-iron led to the development of intracellular bacterial communities that are known to contribute to persistence and recurrence in other diseases. New approaches for therapeutic interventions that reduce the production of intracellular bacterial communities and promote trafficking through the endolysosomal pathway were revealed through the use of pharmacological inhibition of macropinocytosis. This work demonstrates the importance of an intracellular niche for NTHI and provides new approaches for intervention for acute, chronic, and recurring episodes of otitis media.


Subject(s)
Haemophilus Infections/microbiology , Haemophilus influenzae/drug effects , Haemophilus influenzae/physiology , Otitis Media/microbiology , Pinocytosis/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biofilms/growth & development , Cell Line , Chinchilla/microbiology , Cytoplasm/metabolism , Disease Models, Animal , Ear, Middle/microbiology , Heme/metabolism , Humans , Iron/metabolism , Protein Transport
12.
Am J Physiol Renal Physiol ; 312(1): F43-F53, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27760770

ABSTRACT

Acquired renal scarring occurs in a subset of patients following febrile urinary tract infections and is associated with hypertension, proteinuria, and chronic kidney disease. Limited knowledge of histopathology, immune cell recruitment, and gene expression changes during pyelonephritis restricts the development of therapies to limit renal scarring. Here, we address this knowledge gap using immunocompetent mice with vesicoureteral reflux. Transurethral inoculation of uropathogenic Escherichia coli in C3H/HeOuJ mice leads to renal mucosal injury, tubulointerstitial nephritis, and cortical fibrosis. The extent of fibrosis correlates most significantly with inflammation at 7 and 28 days postinfection. The recruitment of neutrophils and inflammatory macrophages to infected kidneys is proportional to renal bacterial burden. Transcriptome analysis reveals molecular signatures associated with renal ischemia-reperfusion injury, immune cell chemotaxis, and leukocyte activation. This murine model recapitulates the cardinal histopathological features observed in humans with acquired renal scarring following pyelonephritis. The integration of histopathology, quantification of cellular immune influx, and unbiased transcriptional profiling begins to define potential mechanisms of tissue injury during pyelonephritis in the context of an intact immune response. The clear relationship between inflammatory cell recruitment and fibrosis supports the hypothesis that acquired renal scarring arises as a consequence of excessive host inflammation and suggests that immunomodulatory therapies should be investigated to reduce renal scarring in patients with pyelonephritis.


Subject(s)
Cicatrix/metabolism , Escherichia coli/isolation & purification , Inflammation/microbiology , Kidney/microbiology , Pyelonephritis/microbiology , Vesico-Ureteral Reflux/immunology , Animals , Disease Models, Animal , Female , Fibrosis/immunology , Fibrosis/microbiology , Inflammation/immunology , Inflammation/pathology , Kidney/pathology , Mice , Mice, Inbred C3H , Nephritis, Interstitial/immunology , Nephritis, Interstitial/microbiology , Nephritis, Interstitial/pathology , Pyelonephritis/immunology , Reperfusion Injury/microbiology , Reperfusion Injury/pathology , Vesico-Ureteral Reflux/microbiology
13.
J Pediatr Urol ; 12(3): 172.e1-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26951923

ABSTRACT

INTRODUCTION: Control of bacteriuria is problematic in patients who perform clean intermittent catheterization for management of neurogenic bladder. This population is often burdened with multiple urinary tract infections (UTIs), placing them at increased risk of end-stage renal disease. Hydrophilic catheters are a potential way to improve smooth and clean insertion, reduce disruption of the urothelium, and reduce bacterial colonization. OBJECTIVE: The goal of the study was to compare the type and virulence of microorganisms recovered from the urine of patients that use either a hydrophilic or conventional polyvinyl chloride (PVC) catheter. METHODS: Fifty patients with an underlying diagnosis of myelomeningocele were recruited for a 12-month prospective, randomized, investigator-blinded study. Twenty-five patients were allocated to the hydrophilic catheter intervention, and 25 continued use of a PVC catheter. Cultures were performed on urine obtained by catheterization at enrollment, and 3, 6, and 12 months. Bacterial species were assigned a designation as either potentially pathogenic or non-pathogenic. Escherichia coli isolates were the most predominant and were serotyped to further stratify the pathogenicity of the strains. Lastly, patients were surveyed at enrollment, and at the two later time points evaluating their current catheter for satisfaction. RESULTS: A total of 232 different bacterial isolates were obtained from the 182 collected urine cultures. In addition, seven species were recovered from the two UTI reported during the study period. Bacterial growth was not detected in 29 of the samples (16%). Although not statistically significant, collectively there was a 40% decrease in the average number of potentially pathogenic species recovered from those patients using hydrophilic catheters (0.81 per urine sample) compared with PVC catheter use (1.24 per urine sample). Since E. coli species can be either pathogenic or non-pathogenic, we examined 14 of the most commonly implicated serotypes associated with uropathogenic E. coli (UPEC). We identified the serotype of 57% of E. coli strains recovered. There was a trend for the recovery of fewer UPEC serotypes from the hydrophilic group (54% hydrophilic verses 64% PVC), further suggesting that the catheter type may influence the microbiological milieu. Although no significant differences were reported in patient satisfaction, almost half of the patients from the hydrophilic catheter cohort continue use of this type of catheter. CONCLUSIONS: There was a trend for reduced recovery of potentially pathogenic bacteria with the use of hydrophilic catheters. The reduction in potentially pathogenic species will reduce antibiotic exposures and some patients may prefer the comfort hydrophilic catheters provide.


Subject(s)
Intermittent Urethral Catheterization/instrumentation , Polyvinyl Chloride , Urinary Catheters/microbiology , Urine/microbiology , Adolescent , Adult , Child , Child, Preschool , Equipment Design , Escherichia coli/isolation & purification , Female , Humans , Hydrophobic and Hydrophilic Interactions , Male , Prospective Studies , Single-Blind Method , Young Adult
14.
J Bacteriol ; 198(6): 964-72, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26755631

ABSTRACT

UNLABELLED: Urinary tract infection (UTI) is one of the most common ailments requiring both short-term and prophylactic antibiotic therapies. Progression of infection from the bladder to the kidney is associated with more severe clinical symptoms (e.g., fever and vomiting) as well as with dangerous disease sequelae (e.g., renal scaring and sepsis). Host-pathogen interactions that promote bacterial ascent to the kidney are not completely understood. Prior studies indicate that the magnitude of proinflammatory cytokine elicitation in vitro by clinical isolates of uropathogenic Escherichia coli (UPEC) inversely correlates with the severity of clinical disease. Therefore, we hypothesize that the magnitude of initial proinflammatory responses during infection defines the course and severity of disease. Clinical UPEC isolates obtained from patients with a nonfebrile UTI elicited high systemic proinflammatory responses early during experimental UTI in a murine model and were attenuated in bladder and kidney persistence. Conversely, UPEC isolates obtained from patients with febrile UTI elicited low systemic proinflammatory responses early during experimental UTI and exhibited prolonged persistence in the bladder and kidney. Soluble factors in the supernatant from saturated cultures as well as the lipopolysaccharide (LPS) serotype correlated with the magnitude of proinflammatory responses in vitro. Our data suggest that the structure of the O-antigen sugar moiety of the LPS may determine the strength of cytokine induction by epithelial cells. Moreover, the course and severity of disease appear to be the consequence of the magnitude of initial cytokines produced by the bladder epithelium during infection. IMPORTANCE: The specific host-pathogen interactions that determine the extent and course of disease are not completely understood. Our studies demonstrate that modest changes in the magnitude of cytokine production observed using in vitro models of infection translate into significant ramifications for bacterial persistence and disease severity. While many studies have demonstrated that modifications of the LPS lipid A moiety modulate the extent of Toll-like receptor 4 (TLR4) activation, our studies implicate the O-antigen sugar moiety as another potential rheostat for the modulation of proinflammatory cytokine production.


Subject(s)
Cytokines/metabolism , O Antigens/immunology , Serogroup , Urinary Tract Infections/immunology , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/classification , Uropathogenic Escherichia coli/immunology , Animals , Cells, Cultured , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/microbiology , Humans , Mice , O Antigens/classification , Urinary Tract/immunology , Urinary Tract/microbiology , Urinary Tract/pathology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/isolation & purification , Uropathogenic Escherichia coli/pathogenicity
15.
Mol Cell Proteomics ; 15(3): 1117-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26711468

ABSTRACT

A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.


Subject(s)
Haemophilus Infections/metabolism , Haemophilus influenzae/pathogenicity , Metabolomics/methods , Otitis Media/microbiology , Proteomics/methods , Actin-Related Protein 2-3 Complex/metabolism , Animals , Chinchilla , Chromatography, Liquid , Disease Models, Animal , Haemophilus Infections/immunology , Host-Pathogen Interactions , Humans , Otitis Media/immunology , Otitis Media/metabolism , Tandem Mass Spectrometry
16.
Urology ; 86(3): 425-31, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26189137

ABSTRACT

Patients with persistent lower urinary tract symptoms and negative urine cultures are often difficult to treat. Infection may go undetected in these patients because the concentrations of bacteria in their urine are beneath the threshold of standard urine culture techniques. Empiric treatment may result in temporary relief, followed by recurrent symptoms. Occult and recurrent urinary tract infection may be due to both invasion of the bladder wall by uropathogenic Escherichia coli and the formation of biofilm-like intracellular bacterial communities. This review examines emerging evidence for a role of intracellular bacterial communities in human infection.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Infections/complications , Lower Urinary Tract Symptoms/microbiology , Urinary Tract Infections/complications , Urothelium/microbiology , Bacterial Infections/diagnosis , Bacterial Load , Chronic Disease , Female , Humans , Male , Recurrence , Urinary Tract Infections/diagnosis
17.
Mol Microbiol ; 96(6): 1119-35, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25757804

ABSTRACT

Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone-like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , DNA-Binding Proteins/metabolism , Integration Host Factors/metabolism , Uropathogenic Escherichia coli/physiology , DNA, Bacterial/metabolism , Extracellular Matrix/metabolism , Uropathogenic Escherichia coli/metabolism
18.
FEMS Microbiol Lett ; 360(1): 1-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25228010

ABSTRACT

Bacteria have the exquisite ability to maintain a precise diameter, cell length, and shape. The dimensions of bacteria size and shape are a classical metric in the distinction of bacterial species. Much of what we know about the particular morphology of any given species is the result of investigations of planktonic cultures. As we explore deeper into the natural habitats of bacteria, it is increasingly clear that bacteria can alter their morphology in response to the environment in which they reside. Specific morphologies are also becoming recognized as advantageous for survival in hostile environments. This is of particular importance in the context of both colonization and infection in the host. There are multiple examples of bacterial pathogens that use morphological changes as a mechanism for evasion of host immune responses and continued persistence. This review will focus on two systems where specific morphological changes are essential for persistence in animal models of human disease. We will also offer insight into the mechanism underlying the morphological changes and how these morphotypes aid in persistence. Additional examples of morphological changes associated with survival will be presented.


Subject(s)
Bacteria , Bacterial Infections , Bacterial Physiological Phenomena , Animals , Bacteria/cytology , Bacteria/metabolism , Bacteria/pathogenicity , Bacterial Infections/microbiology , Bacterial Infections/physiopathology , Disease Models, Animal , Humans , Mice , Otitis Media , Urinary Tract Infections
19.
Kidney Int ; 85(5): 1179-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24107847

ABSTRACT

Recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Previously, we have shown that ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that has a broad-spectrum antimicrobial activity against uropathogenic bacteria. The urothelium of the lower urinary tract and intercalated cells of the kidney produce RNase 7, but regulation of its antimicrobial activity has not been well defined. Here, we characterize the expression of an endogenous inhibitor, ribonuclease inhibitor (RI), in the urinary tract and evaluate its effect on the antimicrobial activity of RNase 7. Using RNA isolated from non-infected human bladder and kidney tissue, quantitative real-time polymerase chain reaction showed that RNH1, the gene encoding RI, is constitutively expressed throughout the urinary tract. With pyelonephritis, RNH1 expression and RI peptide production significantly decrease. Immunostaining localized RI production to the umbrella cells of the bladder and intercalated cells of the renal collecting tubule. In vitro assays showed that RI bound to RNase 7 and suppressed its antimicrobial activity by blocking its ability to bind the cell wall of uropathogenic bacteria. Thus, these results demonstrate a new immunomodulatory role for RI and identified a unique regulatory pathway that may affect how RNase 7 maintains urinary tract sterility.


Subject(s)
Carrier Proteins/metabolism , Kidney/enzymology , Pyelonephritis/enzymology , Ribonucleases/antagonists & inhibitors , Urinary Bladder/enzymology , Urothelium/enzymology , Adolescent , Adult , Aged , Carrier Proteins/genetics , Carrier Proteins/urine , Case-Control Studies , Cell Wall/enzymology , Child , Child, Preschool , Enterococcus faecalis/enzymology , Enterococcus faecalis/pathogenicity , Escherichia coli/enzymology , Escherichia coli/pathogenicity , Female , Gene Expression Regulation, Enzymologic , Host-Pathogen Interactions , Humans , Kidney/microbiology , Leukocyte Elastase/metabolism , Male , Middle Aged , Protein Binding , Proteolysis , Pyelonephritis/genetics , Pyelonephritis/microbiology , Pyelonephritis/urine , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , Ribonucleases/urine , Time Factors , Urinary Bladder/microbiology , Urothelium/microbiology
20.
PLoS One ; 8(10): e77714, 2013.
Article in English | MEDLINE | ID: mdl-24204930

ABSTRACT

Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1(-/-)) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1(-/-) and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.


Subject(s)
Anti-Infective Agents/metabolism , Urinary Tract/metabolism , Urinary Tract/microbiology , beta-Defensins/genetics , beta-Defensins/metabolism , Animals , Escherichia coli Infections/metabolism , Escherichia coli Infections/prevention & control , Female , Humans , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Uropathogenic Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...