Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39158133

ABSTRACT

Redox-active metal-organic frameworks (MOFs) are very promising materials due to their potential capabilities for postsynthetic modification aimed at tailoring their application properties. However, the research field related to redox-active MOFs is still relatively underdeveloped, which limits their practical application. We investigated the self-assembly process of Cr(II) ions and isophthalate (m-bdc) linkers, which have been previously demonstrated to yield 0D metal-organic polyhedra. However, using the diffusion-controlled synthetic approach, we demonstrate the selective preparation of a 2D-layered Cr(II)-based MOF material [Cr(m-bdc)]·H2O (1·H2O). Remarkably, the controlled oxidation of the developed 2D MOF using nitric oxide or dry oxygen resulted in modified porous materials with excellent H2/N2 adsorption selectivities.

2.
Chem Commun (Camb) ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133042

ABSTRACT

We present an efficient route to tetramethylalumoxane by the controlled hydrolysis of AlMe3 in the presence of pyridine. The AlMe3(pyr) hydrolysis by 0.5 and 1 equiv. of H2O has been followed with real-time 1H NMR. Based on high-level quantum-chemical calculations, we conclude that hypervalent, pentacoordinate aluminium species are critical in the first steps of hydrolysis.

3.
Chemistry ; : e202402021, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037004

ABSTRACT

Alumoxanes are typically produced via controlled hydrolysis of short-chain alkyl aluminium compounds which leads to oligomeric species that are usually difficult to obtain in crystalline form. Simultaneously, various alternative non-hydrolytic approaches to alumoxanes have also been used. In this work, we report on a new methylalumoxane scaffold derived from the alkylation of a series of dicarboxylic acids: itaconic acid (HO2CCH2C(=CH2)CO2H), succinic acid (HO2CCH2CH2CO2H) and homophthalic acid (HO2CCH2C6H4CO2H). The reactions of AlMe3 with a selected dicarboxylic acid in the molar ratio 4:1 conducted at elevated temperature occur with double methylation of each carboxylic group and provide to the formation of a new methylalumoxane aggregate, Me10Al6O4, flanked by methylaluminium diolate units. We also aimed to obtain dialkylaluminium derivatives of dicarboxylic acids by the controlled reaction of the appropriate acid with AlMe3 in the 1:2 stoichiometry. While the synthesis of organoaluminium derivatives of flexible aliphatic dicarboxylic acids (itaconic and succinic acids) is challenging due to their insolubility, the related homophtalate compound readily forms a molecular tetranuclear cluster, [(homophtalate)(AlMe2)2]2. The molecular and crystal structures of the resulting compounds were determined via NMR spectroscopic analysis and single crystal X-ray diffraction crystallography.

4.
J Am Chem Soc ; 146(28): 18938-18947, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38847558

ABSTRACT

Redox-inactive metal ions are essential in modulating the reactivity of various oxygen-containing metal complexes and metalloenzymes, including photosystem II (PSII). The heart of this unique membrane-protein complex comprises the Mn4CaO5 cluster, in which the Ca2+ ion acts as a critical cofactor in the splitting of water in PSII. However, there is still a lack of studies involving Ca-based reactive oxygen species (ROS) systems, and the exact nature of the interaction between the Ca2+ center and ROS in PSII still generates intense debate. Here, harnessing a novel Ca-TEMPO complex supported by the ß-diketiminate ligand to control the activation of O2, we report the isolation and structural characterization of hitherto elusive Ca peroxides, a homometallic Ca hydroperoxide and a heterometallic Ca/K peroxide. Our studies indicate that the presence of K+ cations is a key factor controlling the outcome of the oxygenation reaction of the model Ca-TEMPO complex. Combining experimental observations with computational investigations, we also propose a mechanistic rationalization for the reaction outcomes. The designed approach demonstrates metal-TEMPO complexes as a versatile platform for O2 activation and advances the understanding of Ca/ROS systems.

5.
Small ; : e2403685, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813722

ABSTRACT

Inherent features of metal halide perovskites are their softness, complex lattice dynamics, and phase transitions spectacularly tuning their structures and properties. While the structural transformations are well described and classified in 3D perovskites, their 1D analogs are much less understood. Herein, both temperature- and pressure-dependent structural evolutions of a 1D AcaPbI3 perovskitoid incorporating acetamidinium (Aca) cation are examined. The study reveals the existence of nine phases of δ-AcaPbI3, which present the most diverse polymorphic collection among known perovskite materials. Interestingly, temperature- and pressure-triggered phase transitions in the 1D perovskotoid exhibit fundamentally different natures: the thermal transformations are mainly associated with the collective translations of rigid polyanionic units and ordering/disordering dynamics of Aca cations, while the compression primarily affects inorganic polymer chains. Moreover, in the 1-D chains featuring the face-sharing connection mode of the PbI6 octahedra the Pb···Pb distances are significantly shortened compared to the corner-sharing 3D perovskite frameworks, hence operating in the van der Waals territory. Strikingly, a good correlation is found between the Pb···Pb distances and the pressure evolution of the bandgap values in the δ-AcaPbI3, indicating that in 1D perovskitoid structures, the contacts between Pb2+ ions are one of the critical parameters determining their properties.

6.
Chemistry ; : e202401968, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801170

ABSTRACT

Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.

7.
Dalton Trans ; 53(16): 7012-7022, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38563241

ABSTRACT

Polymorphism and co-crystallization have gradually gained attention as new tools in the development of modern crystalline functional materials. However, the study on the selective self-assembly of metal clusters into multicomponent crystals is still in its infancy. Herein, we present the synthesis and characterization of two new heteroleptic hydroxido-acetato and acetato Co(II) clusters [Co6(OH)2(OAc)4(pyret)6] (1) and [Co6(OAc)6(pyret)6] (2) incorporating auxiliary 2-pyrrolidinoethoxylate (pyret) ligands. On this occasion, we revealed that the commonly used thermal procedure for dehydration of cobalt(II) acetate leads to a reagent comprising substantial contamination by cobalt hydroxido moieties. Comprehensive structural analysis of new compounds demonstrated intriguing crystal structure diversity of hydroxido-acetato cluster 1, which represents a rare example of both conformational and packing polymorphism in one compound, originating from the flexibility of organic O,N-ligands in the secondary coordination sphere. Furthermore, both clusters exhibit an interesting propensity for the selective formation of co-crystals 1·2 driven mainly by van der Waals forces and specific shape complementarity between co-formers.

SELECTION OF CITATIONS
SEARCH DETAIL